Solar Powered Proton Exchange Membrane Electrolyser for Hydrogen Production Paper No. 2024-DF-05 Section Research Papers

##plugins.themes.academic_pro.article.main##

Dr. Sharma G.S.
Dr .G. L. Kameswari

Abstract

The production of hydrogen was explored in many ways such as auto thermal reforming, partial oxidation, biomass gasification, steam reforming, water electrolysis, Kvaerner process, thermochemical process and photo-biological process to utilize the high calorific value fuel for combustion in IC Engines for advanced transportation. In this paper, we have attempted the estimation of the production of hydrogen using the Proton Exchange membrane electrolyzer. The water splitting in Solar powered PEM EL is simulated and electrode kinetics is explained in detail. Scaling requirements for the production of 100 kg of hydrogen per day is presented.


Keywords: Hydrogen, Anodic reaction, Cathodic reaction, Platinum, iridium, PEM fuel cell

##plugins.themes.academic_pro.article.details##

How to Cite
G.S., D. S., & Dr .G. L. Kameswari. (2024). Solar Powered Proton Exchange Membrane Electrolyser for Hydrogen Production: Paper No. 2024-DF-05. ARAI Journal of Mobility Technology, 4(2), 1115–1125. https://doi.org/10.37285/ajmt.4.2.5

References

  1. . Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013, April). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
  2. . Dinh, H. N., & Mirkarimi, P. B. (2012). Proton exchange membrane electrolysis for hydrogen production: Progress toward high performance and low cost. Current Opinion in Chemical Engineering, 1(2), 138-144.
  3. . Kordesch, K., & Simader, G. R. (1996, March 25). Fuel Cells and Their Applications. Wiley-VCH. http://books.google.ie/books?id=qYTvQgAACAAJ&dq=Fuel+Cells+and+Their+Applications&hl=&cd=1&source=gbs_api
  4. . Carmo, M., & Fritz, D. L. (2017). Electrolysis of water: a review of electrocatalysis. Topics in Catalysis, 60(13-14), 1302-1311.
  5. . Preiß, G., de Haart, L. G. J., Boukamp, B. A., & Veen, J. A. R. (2002). PEM electrolysis cells: The electrochemical behavior of anode and cathode reactions. Electrochimica Acta, 47(15), 2385-2392.
  6. . Jiao, K., Zhang, L., Guan, Y., Liu, X., Chen, Z., Wei, Z., & Shao, Z. (2013). Challenges and opportunities in proton exchange membrane water electrolysis. RSC Advances, 3(41), 18730-18757.
  7. . Giddey, S., Badwal, S. P. S., & Kulkarni, A. (2013). Review of electrochemical water splitting for hydrogen production. Journal of Hydrogen Energy, 38(12), 14256-14267.
  8. . Xiang, Y., Li, Z., Li, H., Zhu, X., Chen, Y., & Wang, S. (2017). High-efficiency proton exchange membrane electrolysis with double-cell structure. International Journal of Hydrogen Energy, 42(42), 26863-26870.
  9. . Barbir, F. (2005). PEM electrolysis for the production of hydrogen from renewable energy sources. Solar Energy, 78(5), 661-669.
  10. . Debe, M. K. (2012). Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486(7401), 43-51.

Most read articles by the same author(s)