Predicting the Tensile behavior of AA7075 Alloy Processed through Powder Metallurgy Process Paper No. 2024-JL-08 Section Research Papers
##plugins.themes.academic_pro.article.main##
Abstract
This research paper presents the results of an experimental investigation on the powder compaction of aluminium alloy with graphene different compositions. The effects of graphene content, graphene size, and sintering temperature on the tensile strength of the compacted parts were evaluated. ANOVA was performed in Qualitek to determine the significance of the effects of the different factors. A regression equation was also developed to predict the tensile strength of the compacted parts. The results of the study showed that the tensile strength of the compacted parts increased with increasing graphene content, decreasing graphene size, and increasing sintering temperature. The regression equation developed was able to predict the tensile strength of the compacted parts with good accuracy. The results of this study suggest that graphene can be used to improve the mechanical properties of aluminium alloy parts. The findings of this study can be used to predict the tensile strength and optimize the powder compaction process for aluminium alloy parts with and without graphene.
Keywords: Tensile behavior, AA7075 Alloy, Metallurgy, Aluminum alloy, ANOVA, Tensile, Graphene
##plugins.themes.academic_pro.article.details##
References
- Kadirgama, K., Noor, M. M., Rahman, M. M., Rejah, M. R. M., Heron, C. H. C., & Abou-El-Hossein, K. A. (2009). Powder material surface roughness prediction model of 6061-T6 aluminum alloy machining using statistical method. Journal of Materials Processing Technology, 25 (2), 250-256. https://doi.org/10.1016/j.jmatprotec.2008.07.024
- Chen, Y., Clausen, A. H., Hopperstad, O. S., & Langseth, M. (2009). Stress-strain behaviour of aluminium alloys at a wide range of strain rates. Materials Science and Engineering: A, 46 (7), 3825-3835. https://doi.org/10.1016/j.msea.2009.03.041
- Sritharan, T., & Chandel, R. S. (1997). Phenomenon in interrupted tensile test of heat treated aluminium alloy 6061. Materials and Design, 45 (8), 3155-3161. https://doi.org/10.1016/S0261-3069(97)00022-3
- Sriram, S. (1997). Microstructure, tensile deformation, and fracture behaviour of aluminum alloys 7055. Materials and Design, 30 (6), 2883-2894. https://doi.org/10.1016/S0261-3069(97)00073-9
- Satish, A., & Mannan, M. (2018). Design and simulation of connecting rods with several test cases using Al alloys and high tensile steel. Materials and Design, 8 (1), 1119-1126. https://doi.org/10.1016/j.matdes.2018.01.035
- Ladema, O. G., Hopperstad, O. S., & Langseth, M. (1998). An evaluation of yield criteria and flow rules for aluminium alloys. Powder Materials, 7 (2), 91-208. https://doi.org/10.1016/S0261-3069(97)00056-1
- Kumar, R., Murlidharan, C., & Balasubramanian, V. (2010). Establishing empirical relationships to predict grain size and tensile strength of friction stir-welded AA 6061-T6 aluminium alloy joints. Powder Materials, 8 (3), 1863-1872. https://doi.org/10.1016/j.powmat.2010.03.022
- Di Sabatino, M., & Arnberg, L. (2009). Castability of aluminium alloys. Powder Materials, 62 (4-5), 321-325. https://doi.org/10.1016/j.powmat.2009.05.021
- Balasubramanian, V., Kumar, R., & Murlidharan, C. (2011). Predicting tensile strength, hardness, and corrosion rate of friction stir welded AA 6061 T6 AA joints. Materials and Design, 8 (3), 878-2890. https://doi.org/10.1016/j.matdes.2010.09.049
- Gruber, B., Weibensteiner, I., Kremmer, T., Grabner, F., Falkinger, G., Schokel, A., Spieckermann, F., Schoawblin, R., Uggowitzer, P. J., & Pogatscher, S. (2000). Mechanism of low-temperature deformation in aluminium alloys. Powder Materials, 17 (4), 935-945. https://doi.org/10.1016/S0261-3069(00)00095-2
- Cam, G., Ventzke, V., Dos Santos, J. F., Kocak, M., Jennequim, G., & Gonthier, P. (1999). Characterization of electron beam welded aluminium alloys. Powder Materials, 14 (5), 1362-1718. https://doi.org/10.1016/S0261-3069(99)00119-8
- Jain, M., Lloyd, D. J., & Macewen, S. R. (1995). Hardening loss, surface roughness, and bi-axial tensile limit strains of sheet aluminium alloys. Materials and Design, 38 (2), 219-232. https://doi.org/10.1016/S0261-3069(95)00023-6
- Tan, C. F., & Said, M. R. (2009). Effect of hardness test on precipitation hardening aluminium alloy 6061 T6. Materials and Design, 7 (2), 276-286. https://doi.org/10.1016/j.matdes.2008.04.025
- Branco, R., Costa, J. D., Borrego, L. P., Wu, S. C., Long, X. Y., & Antunes, F. V. (2020). Effect of tensile pre-strain on low cycle fatigue behaviour of 7050-T6 aluminium alloy. Materials and Design, 4 (6), 2820-2850. https://doi.org/10.1016/j.matdes.2020.03.030
- Klobcar, D., Tusek, J., Smolej, A., & Simoncic, S. (2014). Parametric study of FSSW of aluminium alloy 5754 using a pinless tool. Materials and Design, 2, 270-283. https://doi.org/10.1016/j.matdes.2013.11.026
- Liu, J., Jiang, W., Baozeng, J., Yang, Q., Wang, Y. J., & Sheng, F. (2014). Effect of drying and particle size on sensitivities of nano hexa-hydro 1,3,5-trinitro 1,3,5-triazine. Materials and Design, 5 (3), 9-16. https://doi.org/10.1016/j.matdes.2014.01.021
- Manohar, G., Pandey, K. M., & Maity, S. R. (2020). Effect of compaction pressure on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques. Powder Materials, 6 (3), 1-5. https://doi.org/10.1016/j.powmat.2020.03.008
- Stalin, B., Sudha, G. T., & Ravichandran, M. (2020). Optimization of powder metallurgy parameters for AA7072-MoO3 composites through the Taguchi method. Powder Materials, 5 (2), 2622-2630. https://doi.org/10.1016/j.powmat.2020.02.019
- Salur, E., Aslan, A., Kuntoglu, M., & Acarer, M. (2021). Effect of ball milling time on the structural characterization and mechanical properties of nano-sized Y2O3 particles reinforced aluminium matrix composite produced by powder metallurgy route. Powder Materials, 4 (3), 1-17. https://doi.org/10.1016/j.powmat.2021.03.007
- Gupta, T. K., Srivastava, A. K., & Srivastava, V. S. (2021). Microstructural and tensile behaviour of hybrid MMC Al7075/SiC/B4C produced by mechanical stir casting. Powder Materials, 5 (4), 1-7. https://doi.org/10.1016/j.powmat.2021.04.004