Impact of Fused Deposition Modeling Process Parameters and Heat Treatment on Mechanical Characteristics and Product Quality: A Review Paper No.: 2023-JL-09 Section Review Papers

##plugins.themes.academic_pro.article.main##

Mohd Yousuf Ali
G. Krishna Mohana Rao
B. Anjaneya Prasad

Abstract

Fused Deposition Modeling (FDM) is indeed one of the most commonly used methods of additive manufacturing, particularly for printing polymers and fiber-reinforced polymer composites. When compared to more conventional production meth ods like injection molding, the key benefits of FDM include producing components with intricate shapes, minimal material wastage, shorter production times, and lower costs because no tooling is needed. However, the strength and surface quality of the product produced using this technique are lower, that can be improved by selecting the optimized design variable and applying heat treatment depending on how the product will be used in an industry. This review paper provides an overview of the effect of different process parameters on mechanical properties, print time, and surface characteristics of the parts made of polymers and fiber-reinforced polymer composites in addition to the challenges encountered during the printing of composites. It also discusses the new material’s development, such as natural fiber-reinforced polymer composites, the impact of heat treatment, and the void formation influence on the mechanical properties, build time, dimensional accuracy, and surface finish of 3D-printed parts.

##plugins.themes.academic_pro.article.details##

Author Biography

Mohd Yousuf Ali, Department of Mechanical Engineering, Jawaharlal Nehru Technology University Hyderabad, Hyderabad, Telangana, India.

Corresponding Author: Mr. Mohd Yousuf Ali, Research Scholar, Department of Mechanical Engineering, University College of Engineering Science and Technology, Jawaharlal Nehru Technology University, Hyderabad, Telangana, India. Email: mohdyousufmech29@gmail.com

How to Cite
Mohd Yousuf Ali, G. Krishna Mohana Rao, & B. Anjaneya Prasad. (2023). Impact of Fused Deposition Modeling Process Parameters and Heat Treatment on Mechanical Characteristics and Product Quality: A Review: Paper No.: 2023-JL-09. ARAI Journal of Mobility Technology, 3(4), pp.883–912. https://doi.org/10.37285/ajmt.3.4.9

References

  1. Sheoran AJ, Kumar H. Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Materials Today: Proceedings. 2020; 21: 1659-1672. DOI: 10.1016/j.matpr.2019.11.296
  2. Kumar LJ, Krishnadas Nair CG. Current trends of additive manufacturing in the aerospace industry. Advances in 3D printing & additive manufacturing technologies. 2017; 39-54. doi:10.1007/978-981-10-0812-2_4
  3. Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Applied materials today. 2017; 7: 120-133. doi: 10.1016/j.apmt.2017.02.004
  4. Zadpoor AA, Malda J. Additive manufacturing of biomaterials, tissues, and organs. Annals of biomedical engineering. 2017; 45: 1-11. https://doi.org/10.1007/s10439-016-1719-y
  5. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018; 143: 172-196. doi: 10.1016/j.compositesb.2018.02.012
  6. Turner BN, Strong R, Gold SA. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid prototyping journal. 2014; 20(3): 192-204. doi: 10.1108/RPJ-01-2013-0012
  7. Turner BN, Gold SA. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal. 2015; 21(3): 250-261. doi: 10.1108/RPJ-02-2013-0017
  8. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010; 31(24): 6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
  9. Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. Journal of Materials Science: Materials in Medicine. 2014; 25: 845-856. doi: 10.1007/s10856-013-5107-y
  10. Duan B, Wang M. Selective laser sintering and its application in biomedical engineering. MRS bulletin. 2011; 36(12): 998-1005. doi: 10.1557/mrs.2011.270
  11. Mazzoli A. Selective laser sintering in biomedical engineering. Medical & biological engineering & computing. 2013; 51: 245-256. doi: 10.1007/s11517-012-1001-x
  12. Luo Y, Lode A, Wu C, Chang J, Gelinsky M. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS applied materials & interfaces. 2015; 7(12): 6541-6549. doi: org/10.1021/am508469h
  13. Park SA, Lee SH, Kim WD. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess and biosystems engineering. 2011; 34: 505-513. doi: 10.1007/s00449-010-0499-2
  14. Rimington RP, Capel AJ, Christie SD, Lewis MP. Biocompatible 3D printed polymers via fused deposition modelling direct C 2 C 12 cellular phenotype in vitro. Lab on a Chip. 2017; 17(17): 2982-2993. doi: 10.1039/C7LC00577F
  15. Singh R. Process capability study of polyjet printing for plastic components. Journal of mechanical science and technology. 2011; 25: 1011-1015. doi: 10.1007/s12206-011-0203-8
  16. Gaynor AT, Meisel NA, Williams CB, Guest JK. Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. Journal of Manufacturing Science and Engineering, 2014; 136(6): 061015. doi: 10.1115/1.4028439
  17. Masood SH. Advances in fused deposition modeling. Comprehensive materials processing. 2014; 69-91: doi: 10.1016/B978-0-08-096532-1.01002-5
  18. Fallon JJ, McKnight SH, Bortner MJ. Highly loaded fiber filled polymers for material extrusion: a review of current understanding. Add Manuf. 2019;30: 100810. doi: 10.1016/j.addma.2019.100810
  19. Blok, LG, Longana ML, Yu H, Woods BK. An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing. 2018; 22: 176-186. doi: 10.1016/j.addma.2018.04.039
  20. Mazzanti V, Malagutti L, Mollica F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers, 2019, 11(7), 1094. doi: 10.3390/polym11071094
  21. Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. The International Journal of Advanced Manufacturing Technology. 2019; 102: 2877-2889. doi: 10.1007/s00170-019-03332-x
  22. Shanmugam V, Rajendran DJJ, Babu K, Rajendran S, Veerasimman A, Marimuthu U, Ramakrishna S. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer testing, 2021, 93, 106925. doi: 10.1016/j.polymertesting.2020.106925
  23. Dhinakaran V, Kumar KM, Ram PB, Ravichandran M, Vinayagamoorthy M. A review on recent advancements in fused deposition modeling. Materials today: proceedings. 2020; 27: 752-756. doi: 10.1016/j.matpr.2019.12.036
  24. Penumakala, PK, Santo J, Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B: Engineering. 2020; 201: 108336. doi: 10.1016/j.compositesb.2020.108336
  25. Carneiro OS, Silva AF, Gomes R. “Fused deposition modeling with polypropylene”, Mater. Design. 2015; 83: 768–776. doi: 10.1016/j.matdes.2015.06.053
  26. Dey A, Yodo N. A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing. 2019; 3(3): 64. doi: 10.3390/jmmp3030064
  27. 3D Printer Filament Comparison Guide. Available online: https://www.matterhackers.com/3d-printerfilament-compare (accessed on 17 July 2019).
  28. 3D Printer Filament Guide—All You Need to Know in 2019. Available online: https://all3dp.com/1/3dprinter-filament-types-3d-printing-3d-filament/ (accessed on 17 July 2019). J. Manuf. Mater. Process. 2019, 3, 64 28 of 30.
  29. FDM 3D Printing Materials Compared. Available online: https://www.3dhubs.com/knowledgebase/fdm3d-printing-materials-compared (accessed on 17 July 2019).
  30. Rajpurohit SR, Dave HK. Impact strength of 3D printed PLA using open source FFF-based 3D printer. Progress in Additive Manufacturing. 2021; 6(1): 119-131. doi: 10.1007/s40964-020-00150-6
  31. Spoerk M, Arbeiter F, Cajner H, Sapkota J, Holzer C. Parametric optimization of intra‐and inter‐layer strengths in parts produced by extrusion‐based additive manufacturing of poly (lactic acid). Journal of applied polymer science. 2017; 134(41): 45401. doi: 10.1002/app.45401
  32. Abbott AC, Tandon GP, Bradford RL, Koerner H, Baur JW. Process-structure-property effects on ABS bond strength in fused filament fabrication. Additive Manufacturing. 2018; 19: 29-38. doi: org/10.1016/j.addma.2017.11.002
  33. Wang P, Zou B, Xiao H, Ding S, Huang C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. Journal of Materials Processing Technology. 2019; 271: 62-74. doi: 10.1016/j.jmatprotec.2019.03.016
  34. Galetto M, Verna E, Genta G. Effect of process parameters on parts quality and process efficiency of fused deposition modeling. Computers & Industrial Engineering. 2021; 156: 107238. doi:10.1016/j.cie.2021.107238
  35. Moradi M, Aminzadeh A, Rahmatabadi D, Rasouli SA. Statistical and experimental analysis of process parameters of 3d nylon printed parts by fused deposition modeling: Response surface modeling and optimization. Journal of Materials Engineering and Performance. 2021; 30(7): 5441-5454. doi: 10.1007/s11665-021-05848-4
  36. Venkatraman R, Raghuraman S. Experimental analysis on density, micro-hardness, surface roughness and processing time of Acrylonitrile Butadiene Styrene (ABS) through Fused Deposition Modeling (FDM) using Box Behnken Design (BBD). Materials Today Communications. 2021; 27: 102353. doi:10.1016/j.mtcomm.2021.102353
  37. Soares JB, Finamor J, Silva FP, Roldo L, Cândido LH. Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing. Rapid Prototyping Journal. 2018; 24(8): 1305-1316. doi: 10.1108/RPJ-09-2017-0177
  38. Heidari-Rarani M, Ezati N, Sadeghi P, Badrossamay MR. Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. Journal of Thermoplastic Composite Materials. 2022; 35(12): 2435-2452. doi: 10.1177/0892705720964560
  39. Sood AK, Ohdar RK, & Mahapatra SS. Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Materials & design. 2009; 30(10): 4243-4252. doi: 10.1016/j.matdes.2009.04.030
  40. Meiabadi MS, Moradi M, Karamimoghadam M, Ardabili S, Bodaghi M, Shokri M, Mosavi AH. Modeling the producibility of 3D printing in polylactic acid using artificial neural networks and fused filament fabrication. Polymers. 2021; 13(19): 3219. doi: 10.3390/polym13193219
  41. Le L, Rabsatt MA, Eisazadeh H, Torabizadeh M. Reducing print time while minimizing loss in mechanical properties in consumer FDM parts. International Journal of Lightweight Materials and Manufacture. 2022; 5(2): 197-212. doi: 10.1016/j.ijlmm.2022.01.003
  42. Aliheidari N, Christ J, Tripuraneni R, Nadimpalli S, Ameli A. Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Materials & Design. 2018; 156: 351-361. doi: 10.1016/j.matdes.2018.07.001
  43. Saenz F, Otarola C, Valladares K, Rojas J. Influence of 3D printing settings on mechanical properties of ABS at room temperature and 77 K. Additive Manufacturing. 2021; 39: 101841. doi: 10.1016/j.addma.2021.101841
  44. Camposeco-Negrete C. Optimization of printing parameters in fused deposition modeling for improving part quality and process sustainability. The International Journal of Advanced Manufacturing Technology. 2020; 108: 2131-2147. doi: 10.1007/s00170-020-05555-9
  45. Geng P, Zhao J, Wu W, Ye W, Wang Y, Wang S, Zhang S. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. Journal of Manufacturing Processes. 2019; 37: 266-273. doi: 10.1016/j.jmapro.2018.11.023
  46. Zhao Y, Zhao K, Li Y, Chen F. Mechanical characterization of biocompatible PEEK by FDM. Journal of Manufacturing Processes. 2020; 56: 28-42. doi: 10.1016/j.jmapro.2020.04.063
  47. Wang S, Ma Y, Deng Z, Zhang S, Cai J. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polymer testing. 2020; 86: 106483. doi: 10.1016/j.polymertesting.2020.106483
  48. Patil P, Singh D, Raykar SJ, Bhamu J. Multi-objective optimization of process parameters of Fused Deposition Modeling (FDM) for printing Polylactic Acid (PLA) polymer components. Materials Today: Proceedings. 2021; 45: 4880-4885. doi: 10.1016/j.matpr.2021.01.353
  49. Auffray L, Gouge PA, Hattali L. Design of experiment analysis on tensile properties of PLA samples produced by fused filament fabrication. The International Journal of Advanced Manufacturing Technology. 2022; 1-15. doi: 10.1007/s00170-021-08216-7
  50. Valerga AP, Batista M, Salguero J, Girot F. Influence of PLA filament conditions on characteristics of FDM parts. Materials. 2018; 11(8): 1322. doi: 10.3390/ma11081322
  51. Qattawi A. Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. Journal of Manufacturing Processes. 2018; 36: 164-174. doi: 10.1016/j.jmapro.2018.09.025
  52. Wang L, Gardner DJ. Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer. 2017; 113; 74-80. doi: 10.1016/j.polymer.2017.02.055
  53. Fidan I, Imeri A, Gupta A, Hasanov S, Nasirov A, Elliott A, Nanami N. The trends and challenges of fiber reinforced additive manufacturing. The International Journal of Advanced Manufacturing Technology. 2019; 102: 1801-1818. doi: 10.1007/s00170-018-03269-7
  54. Unterweger C, Brüggemann O, Fürst C. Synthetic fibers and thermoplastic short‐fiber‐reinforced polymers: Properties and characterization. Polymer Composites. 2014; 35(2): 227-236. doi: 10.1002/pc.22654
  55. Zhong W, Li F, Zhang Z, Song L, Li Z. Short fiber reinforced composites for fused deposition modeling. Materials Science and Engineering: A. 2001; 301(2): 125-130. doi: 10.1016/S0921-5093(00)01810-4
  56. Love LJ, Kunc V, Rios O, Duty CE, Elliott AM, Post BK, Blue CA. The importance of carbon fiber to polymer additive manufacturing. Journal of Materials Research. 2014; 29(17): 1893-1898. doi: 10.1557/jmr.2014.212
  57. Fidan I, Imeri A, Gupta A, Hasanov S, Nasirov A, Elliott A, Nanami N. The trends and challenges of fiber reinforced additive manufacturing. The International Journal of Advanced Manufacturing Technology. 2019; 102: 1801-1818. doi: 10.1007/s00170-018-03269-7
  58. Deb D, Jafferson JM. Natural fibers reinforced FDM 3D printing filaments. Materials Today: Proceedings. 2021; 46: 1308-1318. doi: 10.1016/j.matpr.2021.02.397
  59. Rajendran Royan NR, Leong JS, Chan, WN, Tan JR, Shamsuddin, ZSB. Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing. Polymers. 2021; 13(14): 2289. doi: 10.3390/polym13142289
  60. Lee CH, Padzil FNBM, Lee SH, Ainun ZMAA, Abdullah LC. Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review. Polymers. 2021; 13(9): 1407. doi: 10.3390/polym13091407
  61. Jamadi AH, Razali N, Petrů M, Taha MM, Muhammad N, Ilyas RA. Effect of chemically treated kenaf fibre on mechanical and thermal properties of PLA composites prepared through fused deposition modeling (FDM). Polymers. 2021; 13(19): 3299. doi: 10.3390/polym13193299
  62. Rafiee M, Abidnejad R, Ranta A, Ojha K, Karakoç A, Paltakari J. Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturing. AIMS Materials Science. 2021; 8(4): doi: 10.3934/matersci.2021032
  63. Ahmad MN, Ishak MR, Mohammad Taha M, Mustapha F, Leman Z, Anak Lukista DD, Ghazali I. Application of taguchi method to optimize the parameter of fused deposition modeling (FDM) using oil palm fiber reinforced thermoplastic composites. Polymers. 2022; 14(11): 2140. doi: 10.3390/polym14112140
  64. Aumnate C, Soatthiyanon N, Makmoon T, Potiyaraj P. Polylactic acid/kenaf cellulose biocomposite filaments for melt extrusion based-3D printing. Cellulose. 2021; 28: 8509-8525. doi: 10.1007/s10570-021-04069-1
  65. Han SNMF, Taha MM, Mansor MR, Rahman MAA. Investigation of tensile and flexural properties of kenaf fiber-reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling. Journal of Engineering and Applied Science. 2022; 69(1): 52. doi: 10.1186/s44147-022-00109-0
  66. Noor Azammi AM, Sapuan SM, Ishak MR, Sultan MTH. Mechanical and thermal properties of kenaf reinforced thermoplastic polyurethane (TPU)-natural rubber (NR) composites. Fibers and Polymers. 2018; 19: 446-451. doi: 10.1007/s12221-018-7737-7
  67. Antony S, Cherouat A, Montay G. Fabrication and characterization of hemp fibre based 3D printed honeycomb sandwich structure by FDM process. Applied Composite Materials. 2020; 27: 935-953. doi: 10.1007/s10443-020-09837-z
  68. Doğru A, Sözen A, Seydibeyoğlu MÖ, Neşer G. Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF). Hacettepe Journal of Biology and Chemistry. 2022; 50(3): 239-246. doi: 10.15671/hjbc.1032298
  69. Haroon Rashid NI, Meenakshi Reddy R, Venkataramanan AR, Poures MV, Thanikasalam A, Elfasakhany A, Alemayehu A. The Influence of Chemically Treated Hemp Fibre on the Mechanical Behavior and Thermal Properties of Polylactic Acid Made with FDM. Advances in Materials Science and Engineering, 2022. doi: 10.1155/2022/6953136
  70. Shanmugam V, Rajendran DJJ, Babu K, Rajendran S, Veerasimman A, Marimuthu U, Ramakrishna S. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer testing. 2021; 93: 106925. doi: 10.1016/j.polymertesting.2020.106925
  71. Arjun, P., Bidhun, V. K., Lenin, U. K., Amritha, V. P., Pazhamannil, R. V., & Govindan, P. (2022). Effects of process parameters and annealing on the tensile strength of 3D printed carbon fiber reinforced polylactic acid. Materials Today: Proceedings, 62, 7379-7384. https://doi.org/10.1016/j.matpr.2022.02.142
  72. Pazhamannil RV, Govindan P, Edacherian A, Hadidi HM. Impact of process parameters and heat treatment on fused filament fabricated PLA and PLA-CF. International Journal on Interactive Design and Manufacturing (IJIDeM). 2022; 1-15: doi: 10.1007/s12008-022-01082-x
  73. Lee D, Wu GY. Parameters affecting the mechanical properties of three-dimensional (3D) printed carbon fiber-reinforced polylactide composites. Polymers. 2020; 12(11): 2456. doi.org/10.3390/polym12112456
  74. Rao VDP, Rajiv P, Geethika VN. Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA. Materials Today: Proceedings. 2019; 18: 2012-2018. doi: 10.1016/j.matpr.2019.06.009
  75. Kamaal M, Anas M, Rastogi H, Bhardwaj N, Rahaman A. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Progress in Additive Manufacturing. 2021; 6: 63-69. doi: 10.1007/s40964-020-00145-3
  76. Papon EA, Haque A, Mulani SB. Process optimization and stochastic modeling of void contents and mechanical properties in additively manufactured composites. Composites Part B: Engineering. 2019; 177: 107325. doi: 10.1016/j.compositesb.2019.107325
  77. Ansari, AA, Kamil M. Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture. 2022; 5(3): 369-383. doi: 10.1016/j.ijlmm.2022.04.006
  78. Kumar MA, Khan MS, Mishra SB. Effect of fused deposition machine parameters on tensile strength of printed carbon fiber reinforced PLA thermoplastics. Materials Today: Proceedings. 2020; 27: 1505-1510. doi: 10.1016/j.matpr.2020.03.033
  79. Pandey D, Pandey R, Tewari RP. INFLUENCE OF PROCESS PARAMETERS ON MECHANICAL STRENGTHS OF 3D-PRINTED CARBON-PLA BASED COMPOSITES FOR ORTHOTICS AND PROSTHETICS APPLICATIONS. Composites: Mechanics, Computations, Applications: An International Journal. 2023; 14(2): doi: 10.1615/CompMechComputApplIntJ.2022044758
  80. Selvam A, Mayilswamy S, Whenish R. Strength improvement of additive manufacturing components by reinforcing carbon fiber and by employing bioinspired interlock sutures. Journal of Vinyl and Additive Technology. 2020; 26(4): 511-523. doi: 10.1002/vnl.21766
  81. Kovan V, Tezel T, Camurlu HE, Topal ES. Effect of printing parameters on mechanical properties of 3D printed PLA/carbon fibre composites. Materials Science. Non-Equilibrium Phase Transformations. 2018; 4(4): 126-128.
  82. Magri AE, El Mabrouk K, Vaudreuil S, Touhami ME. Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling. Journal of Thermoplastic Composite Materials. 2021; 34(5): 581-595. doi: 10.1177/0892705719847244
  83. Dou H, Cheng Y, Ye W, Zhang D, Li J, Miao Z, Rudykh S. Effect of process parameters on tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites. Materials. 2020; 13(17): 3850. doi: 10.3390/ma13173850
  84. Rimašauskas M, Jasiūnienė E, Kuncius T, Rimašauskienė R, Cicėnas V. Investigation of influence of printing parameters on the quality of 3D printed composite structures. Composite Structures. 2022; 281: 115061. doi: 10.1016/j.compstruct.2021.115061
  85. Ning F, Cong W, Hu Y, Wang H. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. Journal of composite materials. 2017; 51(4): 451-462. doi: 10.1177/0021998316646169
  86. Selvam A, Mayilswamy S, Whenish R, Velu R, Subramanian B. Preparation and evaluation of the tensile characteristics of carbon fiber rod reinforced 3D printed thermoplastic composites. Journal of Composites Science. 2020; 5(1): 8. doi: 10.3390/jcs5010008
  87. Omar NAWY, Shuaib NA, Hadi MHJA, Azmi AI, Misbah MN. Mechanical and physical properties of recycled-carbon-fiber-reinforced polylactide fused deposition modelling filament. Materials, 15(1). 2021; 190: doi: 10.3390/ma15010190
  88. Peng WANG, Bin ZOU, Shouling DING, Lei LI, Huang C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics. 2021; 34(9): 236-246. doi: 10.1016/j.cja.2020.05.040
  89. Vinoth Babu N, Venkateshwaran N, Rajini N, Ismail SO, Mohammad F, Al-Lohedan HA, Suchart S. Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique. Materials Technology. 2022; 37(9): 1008-1025. doi: 10.1080/10667857.2021.1915056
  90. Jayanth N, Jaswanthraj K, Sandeep S, Mallaya NH Siddharth SR. Effect of heat treatment on mechanical properties of 3D printed PLA. Journal of the Mechanical Behavior of Biomedical Materials. 2021; 123: 104764. doi: 10.1016/j.jmbbm.2021.104764
  91. Yang C, Tian X, Li D, Cao Y, Zhao F, Shi C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process. Technol. 2017; 248: 1–7. doi: 10.1016/j.jmatprotec.2017.04.027
  92. Bhandari S, Lopez-Anido RA, Gardner DJ. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing. 2019; 30: 100922. doi: 10.1016/j.addma.2019.100922
  93. Szust A, Adamski G. Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints. Engineering Failure Analysis. 2022; 132: 105932. doi: 10.1016/j.engfailanal.2021.105932
  94. Cao L, Xiao J, Kim JK, Zhang X. Effect of post-process treatments on mechanical properties and surface characteristics of 3D printed short glass fiber reinforced PLA/TPU using the FDM process. CIRP Journal of Manufacturing Science and Technology. 2023; 41: 135-143. doi: 10.1016/j.cirpj.2022.12.008
  95. Butt J, Bhaskar R. Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics. Journal of Manufacturing and Materials Processing. 2020; 4(2): 38. doi: 10.3390/jmmp4020038
  96. Guduru KK, Srinivasu G. Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing. Materials Today: Proceedings. 2020; 33: 5403-5407. doi: 10.1016/j.matpr.2020.03.128
  97. Wang K, Long H, Chen Y, Baniassadi M, Rao Y, Peng Y. Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing. 2021; 147: 106460. doi: 10.1016/j.compositesa.2021.106460
  98. Kozior T, Mamun A, Trabelsi M, Sabantina L, Ehrmann A. Quality of the Surface Texture and Mechanical Properties of FDM Printed Samples after Thermal and Chemical Treatment. Strojniski Vestnik/Journal of Mechanical Engineering. 2020; 66(2): 105-113
  99. Nassar A, Younis M, Elzareef M, Nassar E. Effects of heat-treatment on tensile behavior and dimension stability of 3d printed carbon fiber reinforced composites. Polymers. 2021; 13(24): 4305. doi: 10.3390/polym13244305
  100. Rangisetty S, Peel LD. The effect of infill patterns and annealing on mechanical properties of additively manufactured thermoplastic composites. In Smart Materials, Adaptive Structures and Intelligent Systems. 2017; Vol. 58257: p. V001T08A017. American Society of Mechanical Engineers. https://doi.org/10.1115/SMASIS2017-4011
  101. Ivey M, Melenka GW, Carey JP, Ayranci C. Characterizing short-fiber-reinforced composites produced using additive manufacturing. Advanced Manufacturing: Polymer & Composites Science. 2017; 3(3): 81-91. doi: 10.1080/20550340.2017.1341125
  102. Malagutti L, Ronconi G, Zanelli M, Mollica F, Mazzanti V. A post-processing method for improving the mechanical properties of fused-filament-fabricated 3D-printed parts. Processes. 2022; 10(11): 2399. doi: 10.3390/pr10112399
  103. Wang P, Zou B. Improvement of heat treatment process on mechanical properties of FDM 3D-printed short-and continuous-fiber-reinforced PEEK composites. Coatings. 2022; 12(6): 827. doi: 10.3390/coatings12060827
  104. Tao Y, Kong F, Li Z, Zhang J, Zhao X, Yin Q, Li P. A review on voids of 3D printed parts by fused filament fabrication. Journal of Materials Research and Technology. 2021; 15: 4860-4879. doi: 10.1016/j.jmrt.2021.10.108
  105. Wang P, Zou B, Xiao H, Ding S, Huang C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. Journal of Materials Processing Technology. 2019; 271: 62-74. doi: 10.1016/j.jmatprotec.2019.03.016
  106. Wang L, Gardner DJ. Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer. 2017; 113: 74-80. doi: 10.1016/j.polymer.2017.02.055
  107. Gao X, Zhang D, Wen X, Qi S, Su Y, Dong X. Fused deposition modeling with polyamide 1012. Rapid Prototyping Journal. 2019; 25(7): 1145-1154. doi: 10.1108/RPJ-09-2018-0258
  108. Aliheidari N, Christ J, Tripuraneni R, Nadimpalli S, Ameli A. Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Materials & Design. 2018; 156: 351-361. doi: 10.1016/j.matdes.2018.07.001
  109. Wang L, Gramlich WM, Gardner DJ. Improving the impact strength of Poly (lactic acid) (PLA) in fused layer modeling (FLM). Polymer. 2017; 114: 242-248. doi: 10.1016/j.polymer.2017.03.011
  110. Rajpurohit SR, Dave HK. Impact strength of 3D printed PLA using open source FFF-based 3D printer. Progress in Additive Manufacturing. 2021; 6(1): 119-131. doi: 10.1007/s40964-020-00150-6
  111. Aloyaydi B, Sivasankaran S, Mustafa A. Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polymer Testing. 2020; 87: 106557. doi: 10.1016/j.polymertesting.2020.106557
  112. Abeykoon C, Sri-Amphorn P, Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture. 2020; 3(3): 284-297. doi: 10.1016/j.ijlmm.2020.03.003
  113. Hernandez-Contreras A, Ruiz-Huerta L, Caballero-Ruiz A, Moock V, Siller HR. Extended CT void analysis in FDM additive manufacturing components. Materials. 2020; 13(17): 3831. doi: 10.3390/ma13173831
  114. Pascual-González C, San Martín P, Lizarralde I, Fernández A, León A, Lopes CS, Fernández-Blázquez JP. Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites. Composites Part B: Engineering. 2021; 210: 108652. doi: 10.1016/j.compositesb.2021.108652
  115. Wang X, Zhao L, Fuh JYH, Lee HP. Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers. 2019; 11(7): 1154. doi: 10.3390/polym11071154
  116. Thompson A. Maskery I, Leac RK. X-ray computed tomography for additive manufacturing: a review. Measurement Science and Technology. 2016; 27(7): 072001. doi: 10.1088/0957-0233/27/7/072001
  117. Sommacal S, Matschinski , Drechsler K, Compston P. Characterisation of void and fiber distribution in 3D printed carbon-fiber/PEEK using X-ray computed tomography. Composites Part A: Applied Science and Manufacturing. 2021; 149: 106487. doi: 10.1016/j.compositesa.2021.106487
  118. Sayah N, Smith DE. Effect of Process Parameters on Void Distribution, Volume Fraction, and Sphericity within the Bead Microstructure of Large-Area Additive Manufacturing Polymer Composites. Polymers. 2022; 14(23): 5107. doi: 10.3390/polym14235107
  119. Wang X, Zhao L, Fuh JYH, Lee HP. Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers. 2019; 11(7): 1154. doi: 10.3390/polym11071154
  120. Sommacal S, Matschinski A, Holmes J, Drechsler K, Compston P. Detailed void characterisation by X-ray computed tomography of material extrusion 3D printed carbon fibre/PEEK. Composite Structures. 2023; 308: 116635. doi: 10.1016/j.compstruct.2022.116635
  121. Yang D, Zhang H, Wu J, McCarthy ED. Fibre flow and void formation in 3D printing of short-fibre reinforced thermoplastic composites: An experimental benchmark exercise. Additive Manufacturing. 2021; 37: 101686. doi: 10.1016/j.addma.2020.101686
  122. Somireddy M, Singh CV, Czekanski A. Mechanical behaviour of 3D printed composite parts with short carbon fiber reinforcements. Engineering Failure Analysis. 2020; 107: 104232. doi: 10.1016/j.engfailanal.2019.104232