Lithium-Ion Battery Technologies for Electric Mobility – State-of-the-Art Scenario


Debanjana Pahari
Ashwani Tyagi
Dr. Sreeraj Puravankara


Rechargeable batteries are an integral part of all types of electric vehicles (EVs). Batteries must contain higher energy-power densities and longer cycle life for an EV system. Lead-acid batteries, Nickel-metal hydride batteries, and Lithium-ion batteries (LIBs) have been employed as charge storage in EV systems to date. Lead-acid batteries and Nickel-metal hydride batteries were deployed in EVs by General Motors in 1996. However, the low specific energy in Lead-acid batteries (34 Whkg-1) and high self-discharge (12.5% per day at r.t.) in Nickel-metal hydride batteries have marked these batteries obsolete in EV applications. LIBs currently occupy most of the EV market because of their high specific power (~130-220 Whkg-1) and a low selfdischarge rate (~5% per month). The current technological maturity and mass production in LIBs have reduced the overall battery cost by ~98% in the last three decades, reaching an average value of $140 kWh-1 in 2021. Although a game-changer in battery technologies, LIBs encounter various challenges: high cost, low safety, less reliability, and immature infrastructure despite environmental benignness. Overcharging and overheating of LIBs can cause thermal runway leading to fire hazards or explosion. Declining Liresources also raise concerns regarding the reliability and shelf-life of LIB technology. Hence, a critical assessment of Li-ion chemistries is essential to comprehend the potential of LIBs in electric mobilities and to realize the prospects in EVs.

Keywords: Li-ion Battery Technology; Electric Vehicles; Energy density; Well-to-Wheel; Battery Chemistry; High Voltage Cathodes; Safety


How to Cite
Nagmani, Debanjana Pahari, Ashwani Tyagi, & Dr. Sreeraj Puravankara. (2022). Lithium-Ion Battery Technologies for Electric Mobility – State-of-the-Art Scenario. ARAI Journal of Mobility Technology, 2(2), 233–248.


  1. Onori, S.; Serrao, L.; Rizzoni, G. Hybrid Electric Vehicles: Energy Management Strategies; Springer: Berlin/Heidelberg, Germany, 2016.
  2. Morimota, M. Which is the First Electric Vehicle? Electrical Engineering in Japan. 192 (2), 31-38, 2015.
  3. White, John H. A History of the American Locomotive: Its Development, pp.1830-1880 . North Chelmsford, MA: Courier. p. 14. 1979. ISBN 9780486238180.
  4. May, G. J., Davidson, A., Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage, 15, 145-157, 2018.
  5. Prengaman, R. D., Mirza, A. H. Recycling concepts for lead-acid batteries. Lead-Acid Batteries for Future Automobiles, 578-598, 2017.
  6. Shafiee, S., Topal, E. A long-term view of worldwide fossil fuel prices. Appl. Energy, 87(3), 988-1000, 2010.
  7. Baffes, J., Kose, M. A., Ohnsorge, F., Stocker, M. The Great Plunge in Oil Prices: Causes, Consequences, and Policy Responses. World Bank group, Policy Research Note, PRN/15/01, 2015.
  8. Chian, T. Y., Wei, W. L. J., Le, E. L. Ze., Ren, L. Z., Ping, Y. E., Bakar, N. Z. A., Faizal, M., Shivkumar, S. A Review on Recent Progress of Batteries for Electric Vehicles. Int. J. Appl. Eng. Res., 14, 4441-4461, 2019.
  9. Chan, C. C. The state of the art of electric and hybrid vehicles. Proceedings of the IEEE, 90(2), 247-275, 2002.
  10. Gifford, P., Adams, J., Corrigan, D., Venkatesan, S. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles. J. Power Sources, 80(1-2), 157-163, 1999.
  11. Micah, S. Z., Juhyun, S., and Jessika, E. T. Determinants of lithium-ion battery technology cost decline. Energy Environ. Sci., 14, 6074-6098, 2021.
  12. IEA (2020). Global EV Outlook 2020. IEA, Paris. 2020. (Accessed December 18, 2021).
  13. Staunton, R. H., Ayers, C. W., Marlino, L. D., Chiasson, J. N., and Burress, B. A. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System. UT-Battelle, ORNL-27 (4-00), U.S. Department of Energy, 2006.
  14. Verbelen, F., Lhomme, W., Vinot, E., Stuyts, J., Vafaeipour, M., Hegazy, O., Sergeant, P. Comparison of an optimized electrical variable transmission with the Toyota Hybrid System. Applied Energy, 278, 115616, 2020.
  15. Press Release, 13% of total new car registrations in Europe made up by EVs in January 2020, JATO (London, UK) 2020. (Accessed December 20, 2021).
  16. Song, D., Ruojin, L. Forecasting the sales and stock of electric vehicles using a novel selfadaptive optimized grey model, Engineering Applications of Artificial Intelligence, 100, 104148, 2021.
  17. Jain, A., Prasad, A., Sharma, S., Patni, J. C. Electric Cars a New Era of Digital India- Autonomous Cars or Smart Cars. 5th International Conference on Next Generation Computing Technologies (NGCT-2019) , 2020.
  18. Marom, R., Ziv, B., Banerjee, A., Cahana, B., Luski, S., Aurbach, D. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass. J. Power Sources, 296, 78-85, 2015.
  19. Vishal, S. Electric Vehicles in India: Current Trends and Future Forecasts. International Journal of Electric and Hybrid Vehicles, 13 (2), 117-126, 2021.
  20. Dhar, S. K., Ovshinsky, S. R., Gifford, P. R., Corrigan, D. A., Fetcenko, M. A., Venkatesan, S. Nickel/metal hydride technology for consumer and electric vehicle batteries-a review and up-date. J. Power Sources, 65(1-2), 1-7, 1997.
  21. Ding, Y., Cano, Z. P., Yu, A., Lu, J., Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemistry Energy Reviews, 2, 1-28, 2019.
  22. Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., Mierlo, J. V. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies, 10 (9), 1914, 2017.
  23. Padhi, A. K., Nanjundaswamy, K. S., & Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 144(4), 1188, 1997.
  24. Anseán, G. D., González, V. M., Viera, J. C., Álvarez A. J. C., Blanco V. C. J., García, V. M., Evaluation of LiFePO4 batteries for Electric Vehicle applications. International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances, SmartMILE , 1-8, 2013.
  25. Andre, D., Kim, S. J., Lamp, P., Lux, S. F., Maglia, F., Paschos, O., Stiaszny, B. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A, 3(13), 6709-6732, 2015.
  26. Li, H., Li, J., Ma, X., Dahn, J. R. Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium-ion batteries. J. Electrochem. Soc., 165(5), A1038, 2018.
  27. Delmas, C., Saadoune, I., Rougier, A. The cycling properties of the LixNi1-yCoyO2 electrode. J. Power Sources, 44(1-3), 595-602, 1993.
  28. Li, W., Liu, X., Celio, H., Smith, P., Dolocan, A., Chi, M., Manthiram, A. Mn versus Al in layered oxide cathodes in lithium‐ion batteries: a comprehensive evaluation on long‐term cyclability. Adv. Energy Mater., 8(15), 1703154, 2018.
  29. Zhang, X., Jiang, W. J., Mauger, A., Gendron, F., & Julien, C. M. Minimization of the cation mixing in Li1+x(NMC)1xO2 as cathode material. J. Power Sources, 195(5), 1292-1301, 2010.
  30. Schmuch, R., Wagner, R., Hörpel, G., Placke, T., Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 3(4), 267-278, 2018.
  31. Manthiram, A., Song, B., Li, W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater., 6, 125-139, 2017.
  32. Thackeray, M. M., Kang, S. H., Johnson, C. S., Vaughey, J. T., Benedek, R., Hackney, S. A. Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem., 17(30), 3112-3125, 2007.
  33. Schmuch, R., Wagner, R., Hörpel, G., Placke, T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 3, 267-278, 2018.
  34. Miao, Y., Hynan, P., Jouanne, A. V., Yokochi, A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies, 12, 1074, 2019.
  35. Jun, L., Zhongwei, C., Feng, P., Yi, C., Khalil, A. High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews, 1, 35-53, 2018.
  36. Jian, D., Xuan, T., Haifeng, D., Ying, Y., Wangyan, W., Xuezhe, W., Yunhui, H. Building safe lithium‑ion batteries for electric vehicles: A Review. Electrochemical Energy Review, 3 , 1-42, 2019.
  37. Luo, Y., Guo, L., Xiao, M., Wang, S., Ren, S., Han, D., Meng, Y. Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries. J. Mater. Chem. A, 2 , 4629-4646, 2020.
  38. Liu, Q., Du, C., Shen, B., Zuo, P., Cheng, X., Ma, Y., Yin, G., Gao, Y. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Advances, 6, 88683-88700, 2016.
  39. Chen, X., Shen, W.,Vo, Z. Cao and A. Kapoor. An overview of lithium-ion batteries for electric vehicles. 10th International Power & Energy Conference (IPEC), pp. 230-235, 2012.
  40. Norio, T., Keigo H., Hiroki I. Lithium diffusion in Li4/3Ti5/3O4 particles during insertion and extraction. J. Electrochem. Soc., 158 (6), A725- A730, 2011.
  41. Kai, W., Jun, Y., Yao, Z., Chenyun, W., Deyu, W. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. J. Appl. Electrochem., 42 , 989-995, 2012.
  42. Qiangfeng, X., Bing, L., Fang, D., Li, Y., Mei C. Application of Lithium-Ion Batteries in Vehicle Electrification. Electrochemical Energy: Advanced Materials and Technologies, 6 , 159, 2015.
  43. Fei, D., Liyi, S., Guorong, C., Dengsong Z. Silicon/carbon composite anode materials for lithium-ion batteries. Electrochemical Energy Reviews, 2, 149-198, 2019.
  44. Enevate's Silicon Anodes Could Yield EV Batteries that Run 400 Km on a 5-Minute Charge - IEEE Spectrum, 2020. (Accessed November 27, 2021).
  45. Yan, Lu., Le, Y., Xiong, W. L. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem. 4, 972-996, 2018.
  46. Yu, S. H., Feng, X., Zhang, N., Seok, J., Abruña, H. D. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries. Accounts of Chemical Research, 273–281, 2018.
  47. Yu, S. H., Lee, S.H., Lee, D.J., Sung, Y. E., Hyeon, T. Conversion Reaction-Based Oxide Nanomaterials for Lithium-Ion Battery Anodes. Small, 12, 2146–2172, 2016.
  48. Yoon, S. J., Andrew, S. C., Leah, A. R., Sun-Ho, K., Anne, C. D., Markus, D. G., Steven, M. G., Se- Hee, L. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li‐ion batteries. Adv. Mater., 22 (19), 2010.
  49. Zheng, C., Po-Chun, H., Jeffrey, L., Yuzhang, L., John, W. F. T., Nan, L., Chao, W., Sean, C., Andrews, J. L., Yi, C., Zhenen, B. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy, 1, 15009, 2016.
  50. Nowak, S., Winter, M. Chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium-ion batteries: method development, application and lessons learned. J. Electrochem. Soc., 162(14), A2500, 2015.
  51. Burow, D., Sergeeva, K., Calles, S., Schorb, K., Boerger, A., Roth, C., Heitjans, P. Inhomogeneous degradation of graphite anodes in automotive lithium-ion batteries under low-temperature pulse cycling conditions. J. Power Sources , 307, 806-814, 2016.
  52. Pahari, D., Puravankara, S. Greener, Safer, and Sustainable Batteries: An Insight into Aqueous Electrolytes for Sodium-Ion Batteries. ACS Sustain. Chem. Eng., 8(29), 10613-10625, 2020.
  53. Janek, J., Zeier, W. G. A solid future for battery development. Nat. Energy, 1(9), 1-4, 2016.
  54. Cheng, K. W. E., Divakar, B. P., Wu, H., Ding, K., Ho, H. F. Battery-management system (BMS) and SOC development for electric vehicles. IEEE Trans. Veh. Technol. , 60(1), 76-88, 2010.
  55. Nagmani., and Puravankara, P. Insight into the diverse precursor-based micro-spherical hard carbons as anode materials for sodium-ion and potassium-ion batteries. Material Advances, 3, 810, 2022.
  56. Nagmani., and Puravankara, P. Insight into the Plateau Capacity Dependence on the Rate Performance and Cycling Stability of a Superior Hard Carbon Microsphere Anode for Sodium-Ion Batteries. ACS Appl. Energy Mater., 3(10), 10045– 10052, 2020.
  57. König, A., Nicoletti, L., Schröder, D., Wolff, S., Waclaw, A., Lienkamp, M. An Overview of Parameter and Cost for Battery Electric Vehicles. World Electric Vehicle Journal . 12 (1), 21, 2021.
  58. Goldie-Scot, L. A Behind the Scenes take on Lithium-ion Battery Prices. BNEF Blog, 2019. (Accessed November 28, 2021).
  59. Michael A. Cusumano. Self-Driving Vehicle Technology: Progress and Promises. Communications of the ACM, 63(10), 20-22, 2020.
  60. Jaiswal, D., Kaushal, V., Kant, R., Singh, K. P. Consumer adoption intention for electric vehicles: Insights and evidence from Indian sustainable transportation, Technological Forecasting and Social Change, 173 , 121089, 2021.
  61. Blomgren, G. E. The development and future of lithium-ion batteries. J. Electrochem. Soc., 164(1), A5019, 2016.
  62. Tietge, U., Mock, P., Lutsey, N., Campestrini, A. Comparison of leading electric vehicle policy and deployment in Europe. Int. Council Clean Transp, 49, 847129-102, 2016.
  63. Amelang, S. Germany registers more than 20,000 pure electric cars in a month for first time. Journalism for the Energy Transition, (2020). (Accessed on December 08, 2021).
  64. The Electric Vehicles world sales database, EV Volume, 2021. (Accessed December 10, 2021).
  65. Vedant, S., Virender, S., Vaibhav, S. Analysis of electric vehicle trends, development and policies in India. Case Studies on Transport Policy, 9 (3), 1180-1197, 2021.