ARAI

Progress through Research

Paper No.: 2023-JL-08
Online: ISSN: 2583-3707

7 AJM'l

. 4
T .
‘af of Mot

ARALI Journal of Mobility Technology
https://araijournal.com/index.php/arai
Volume 3 ¢ Issue 4 * October — December, 2023, pp. 856-882

.
NN
55

Research Paper DOI:10.37285/ajmt.3.4.8

Field Programmable Functional Safety Mechanisms
Implementation using FPGA

Author’s Affiliations

Priyank Sharma

STMicroelectronics Private LTD., Plot No.1, Knowledge Park 111, Greater Noida
201308, India

*Corresponding Author: Ms. Priyank Sharma, STMicroelectronics Private LTD.,
Plot No.1, Knowledge Park III, Greater Noida 201308, India.

Email: privanks91@gmail.com

Article History

Received 27/03/2023
Accepted 23/04/2023
Published 15/12/2023

Copyright © ARAI, Pune
Keywords
ASIC, FPGA, Functional Safety, Diagnostic Coverage, Safety Mechanisms, [SO26262

Cite this paper as: Priyank Sharma (2023) “Field Programmable Functional Safety Mechanisms
Implementation using FPGA, ARAI Journal of Mobility Technology, 3(4), pp. 856-882.
Available at: https://doi.org/10.37285/ajmt.3.4.8

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

Abstract

The topic of this report is to build an IC in form of
the FPGA, consisting of different types of safety
mechanisms, which depending on the application
of the design, could help achieve either QM, ASIL
B or ASIL D diagnostic coverage compliance. The
selection of the Safety mechanisms could be made
through configuration bits written in a register.

Tools and devices used

Software

VITIS Model Composer

MATLAB

Simulink

XILINX Toolbox for System generator
VIVADO 2022 Suite

Hardware

o XILINX BASYS 3 Board
= Artix - FPGA

o O O O

Introduction

Until very recently, the global economy faced a
crippling shortage of semiconductor devices, and
the automotive market was especially affected.
One of the key issues for the automotive market
was that ASICs typically formed the bulk of the
supplies, which meant that each application (there
are hundreds of applications in a modern
automobile) required a chip device built
specifically for it. While this delivered great area,
power and performance (commonly called PPA)
statistics, it meant substantial manufacturing and
design investments were required to deliver them,
thus the true potential of ‘economies of scale’ was
not realised. Worse, in light of global medical
emergencies, it became difficult to develop such a
large variety of ASICs.

FPGAs could generally solve some issues but
in the interest of PPA, they are generally not
favoured. But considering how the supply chain
issues have affected operations, a new approach is

857

being presented here, w herein an FPGA device is
proposed, with configurable parameters that a
customer may choose, so as to enable supporting
various applications via same hardware.

One of the key performance benchmarks of a
modern-day automotive ECU is Functional
Safety. An ECU, primarily built of a SoC plus
some other peripheral devices, which is expected
to perform in key critical vehicle operations
(braking system for e.g.), is expected to meet all
functional safety compliance requirements, as
outlined in the 1S026262, the de-facto standard
for automotive Functional Safety.

One of the most stringent requirements as
outlined in the Part-5 of the 1S026262 is that a
HW module expected to fulfil ASIL D compliance
shall have a PMHF (Probabilistic Metrics of HW
faults) below 10 FIT, or 1 in 100M hours.

On the other hand, if an ECU is expected to
fulfil a lower level of ASIL compliance, (ASIL B
for e.g.), it is expected to have a PMHF below 100
FIT, or 1 in 10M hours.

Thus, to achieve the threshold of acceptance of
risk (PMHF), the devices are built with a variety
of design measures, otherwise also called as
Functional Safety Mechanisms. These are SW or
HW implementations that mitigate the effect of a
failure of any part of the SoC. A Typical list of
these is provided in the Part 11 of the [SO26262,
Edition 2018. Of course, depending on the
required ASIL compliance, the safety mechanisms
are designed in a way to have lowest possible PPA
penalties, while meeting the specified Functional
Safety compliance requirements.

Via this report, an FPGA 1is proposed that can
be used in 2 applications with same functional
design but different ‘PMHF requirements’, i.e.
implementation of Functional Safety Mechanisms
is expected to be different. A customer can use the
same FPGA HW and simply configure the
applicability of safety mechanisms using a
configuration setting, so that it can be used in 2
different safety criticality applications.

Abbreviations: FSM: Functional Safety Mechanism; PPA: Performance, Power, Area; ASIC: Application Specific Integrated Chip; FPGA:
Field Programmable Gate Arrays; FIT: Failure in Time (1 FIT=1 in 109 hours); SoC: System on Chip; PMHF: Probabilistic Metric of Hardware
Failures; DC: Diagnostic Coverage; FMEDA: Failure Mode Effects & Diagnostics Analysis

858

In addition to the above innovation, another
novelty shall be the use of Vitis Model Composer
to design and implement the hardware; with the
assumption of no competence in any HDL.

The complete ASIC design flow shall be
implemented.

Theory
Sources of Failure

The 2 major sources of failures in hardware are:
1. Random failures
2. Systematic Failures

Random Failures in ICs are caused by high
energy cosmic particles, but can also be caused by
trace amounts of charged particles emitted in chip
material. [4] The probability of random failures is
a function of the total number of transistors used
and thus, higher the number of transistors in a
chip, the higher the base failure rate. [5]

PMHF Computation

In the part 11 of the ISO26262, the standard gives
the methodology for PMHF computation. The
following figure explains that methodology.

Potential to
violate any SG, in
absence of safety
mechanism

Safety-related hardware Fr(.:clz‘\m
of safe

faults?

element, Aqy) % (non-safe

fault)

% (safe fault)

Is there any safety
mechanism in place to
control failures of the
hardware clement ?

How much coverage is
provided by the safety
mechanism with respect
to residual faults ?

SG: Safety Goal hs Aspr Apr

% (not covered by
Safety mechanism)

ARAI Journal of Mobility Technology Vol 3; Issue 4 « October— December, 2023

PMHEF is computed as per,

PMHFiteid = Zsafety — Related hardware(HW) elements

(Aspr + ARF + ADPEL) [6]
Diagnostic Coverage

Diagnostic coverage is a measure of effectiveness
of the diagnostics implemented in the system.
Mathematically, it is the ratio of the failures
detected and/or controlled by a Safety mechanism
to the total failures) in the element.

Goal

During design phase, certain hardware safety
mechanisms are selected. While this approach
works well in case of ASIC (Application Specific
ICs), where the IC is designed for specific use
cases, it makes it difficult for the same ASIC to be
used in a different ASIL application, since the
choice of the safety mechanisms would invariably
be different, thus leading to a different design of
silicon altogether.

Instead, the topic of this report is to build an IC
in form of the FPGA, consisting of different types
of safety mechanisms, which depending on the
application of the design, could help achieve either
ASIL B or ASIL D compliance.

Potential to

MPE Num. of
Jaults 2 3: treated
as safe fault

violate any SG, in
combination w/ one other
independent

fault ?

% (covered by Safety

mechanism)

Are mechanisms
in place to prevent
the faults from
being latent ?

How much coverage 1s
provided by the safety
mechanisms with
espect to latent faults

% (not covered by
Safety mechanism)

% (covered by
Safety mechanism)

Ao, 1 ApPF, DP

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA 859

optimized for the operational needs of digital

System Design h .
signal processing.

A representative diagram of the system logic IP is
as per follows:

DSP Processor IP

A digital signal processor (DSP) IP is a speciali-
zed microprocessor chip, with its architecture

The IP developed for this report, implements
the following mathematical operation,

F(x,y)=y 4.5x +Ty)

Its implementation in Simulink is as follows:

Configuration

Logic
DSP Shadow Core
Input, X’
Input, ‘v’
Comparator Logic
ASIL Config

Error insertion

DSP Core Functional Safety

Mechanism

(@D |-=0

ERROR

-

CONSTANT3

860

Shadow DSP

A shadow DSP IP implements the exact same DSP
function, by fully independently running the same
operations as the main DSP IP, but on physically
redundant & separate digital logic. It helps to
ensure the functional correctness of the overall
DSP operation. This feature is also called
‘Lockstep,” as explained later.

Its implementation in Simulink is as follows:
Lockstep Comparator logic

An additional comparator logic compares the
output of both the main DSP and shadow DSP IP,
and in the event of a difference, outputs a value of
‘0’, which can basically be assumed to be the safe
state. This is similar to a failing braking or
powertrain system, where in the event of a failure,
the system is expected to output a value of zero (in
addition to ofcourse, the warnings).

Its implementation in Simulink is as follows:
Configuration logic

This module allows the configurability of the
device to suit different safety criticality needs. For
example, 1 of the configurations may allow
activation of the strictest FSMs (to achieve ASIL
D level) while another configuration may allow
activations of somewhat weaker FSMs (to achieve
ASIL B level)

Overall System Design
The overall system design is as per the following

Simulink implementation:

System Functional Safety Analysis

This section shall provide an analytical Estimation
of Device failure rate & diagnostic coverage.

FSM1 - Lockstep

The lockstep logic for the DSP IP has been
implemented as follows. This implementation

ARAI Journal of Mobility Technology Vol 3; Issue 4 « October— December, 2023

implies that each transaction is simultaneously
processed by both the main and shadow IP. In case
of a random error in either of the DSPs, the
lockstep comparator logic would recognise the
difference and immediately set the output signal
value to ‘0’, which is considered a safe state in this
case.

Diagnostic Coverage

The diagnostic coverage (DC) can be calculated as
follows:

DC=

Percentage of failures detected by lockstep logic

Total failures in system

As can be expected, practically all failures can be
handled by this logic, and thus, the DC can be
estimated to be >99%. Infact, the [SO26262 part
11 provides certain estimates that conform to this
estimate.

Cost

Since the lockstep requires a fully redundant
computation path, the cost for lockstep is very
high in terms of PPA penalties, and thus is avoided
if possible.

FSM2 — Duplicated Multiplicand Blocks

An alternate FSM being designed for this
implementation, is for the multiplier blocks.
Similar to Lockstep, in this case, only the
‘multiplicand’ operation is lock-stepped.

Diagnostic Coverage

It is expected that the DC of this implementation
shall be lesser that that of lockstep, because it
covers a small part of the logic, i.e. only the
multiplicands.

Cost

It is expected to have a much lower cost, compared
to a lockstep logic, since only a small section is
lock-stepped.

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

45

861

== |-=0

0

& T

System Generator
System
Generator

Error interface1- To inject error, change value to 0

Input %'

Input 'y’

1

—
ASILD DSP IP

Outtput Signal Value

862 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023

—— P Emor. 1

——p|3
DSP_IP
P 1
1
P12
— b LockStep Comparator
e
" b

DSP_IP_Shadow

]

Complete ASIC Design Flow using CAD/ EDA
tools

Simulink Design

e Complete System developments as shown in
earlier sections

VITIS Model Composer/ HDL Workflow
Advisor

HDL Workflow Advisor facilitates RTL code
(VHDL/Verilog) and testbench generation from a
subsystem, performs synthesis tasks by invoking a

e

supported third party synthesis tool, and annotates
critical path information back to the system.

e Qutput: Generated RTL, test Bench,
Validation Models, Synthesis Report

VIVADO

The complete ASIC Design flow was Iso run in
Vivado 2022.1 suite

e Output: Packaged DSP IP

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

Conclusions

This report demonstrates that an IP has been built,
which allows tuning of FSMs via a configuration
setting.

This allows for the same HW (semiconductor
chip) to be used in different applications of
varying ASIL levels

This eventually results in lower design and
development costs for the development of said
HW, while catering to a large variety of
applications.

The report also demonstrates how effective the
VITIS Model Composes/ Simulink HDL Coder
are, to allow ASIC/ FPGA development from a
Systems’ perspective. A system engineer with
no HDL experience can still develop
semiconductor designs with the aid of such
tools.

Future Scope

This report work only demonstrates ‘in theory’ the
configurability of Safety mechanisms in a Field
Programmable Device.

This work, though initial, is very promising,

and following avenues of research shall be
pursued upon, by interested parties:

1. Validating PMHF Metrics
Injections

via Fault

e [t remains to be validated if the empirical
values of assumed diagnostic coverages
are reflected in the safety analysis

863

Sophisticated tools may be required to
run fault injection campaigns to test the
actual Diagnostic coverages

. Validating the lower Power consumption

assumptions

It remains to be validated if the increased
power penalties due to increased digital
logic of configuration registers are still
lower than a higher ASIL compliant
device catering to a lower ASIL
application

It would have to be calculated on actual
hardware while monitoring power
consumption.

. Validating lower cost assumptions

It remains to be validated if the design,
development & manufacturing costs for 2
ASICs catering to different applications
is still higher than 1 FPGA with higher
complexity

References

https://www.statista.com/statistics/277931/
automotive-electronics-cost-as-a-share-of-
total-car-cost-worldwide/
https://fuse.wikichip.org/news/2207/tsmc-
starts-5-nanometer-risk-production/
https://www.iso.org/standard/68383.html
https://tezzaron.com/media/soft_errors 1
1_secure.pdf
https://www.iso.org/standard/69604.html
https://www.mdpi.com/2076-
3417/12/11/5456

864 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023

Appendix 1: HDL Code for the Sub-system

-- File Name: hdl_prj\hdlsrc\DSP\ASIL_D DSP_IP.vhd
-- Created: 2023-04-23 14:35:58

-- Generated by MATLAB 9.11 and HDL Coder 3.19

-- Model base rate: 0.1
-- Target subsystem base rate: 0.1

-- Clock Enable Sample Time

-- ce_out 0.1
-- Output Signal Clock Enable Sample Time
-- OUTPUT1 ce_out 0.1

-- Module: ASIL D DSP_IP
-- Source Path: DSP/ASIL D DSP IP
-- Hierarchy Level: ©

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ENTITY ASIL_D DSP_IP IS

PORT(clk : IN std_logic;
rstx : IN std_logic;
clk_enable : IN std_logic;
ERROR_rsvd : IN std_logic_vector(63 DOWNTO ©); -- double
INPUT2 : IN std_logic_vector(63 DOWNTO @); -- double
INPUT3 : IN std_logic_vector(63 DOWNTO ©); -- double
ce out : OUT std_logic;
OUTPUT1 : OUT std_logic_vector(63 DOWNTO @) -- double
)

END ASIL_D_DSP_IP;

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA 865
ARCHITECTURE rtl OF ASIL D DSP_IP IS

-- Component Declarations
COMPONENT DSP_IP

PORT(clk : IN std_logic;
rstx : IN std_logic;
enb : IN std logic;
Inl : IN std_logic_vector(63 DOWNTO @); -- double
ERROR_rsvd : IN std_logic_vector(63 DOWNTO ©); -- double
In2 : IN std_logic_vector(63 DOWNTO ©); -- double
Outl : OUT std_logic_vector(63 DOWNTO @) -- double
)

END COMPONENT;,

COMPONENT DSP_IP_SHADOW

PORT(clk : IN std_logic;
rstx : IN std_logic;
enb : IN std_logic;
Inl : IN std logic _vector(63 DOWNTO ©); -- double
In2 : IN std_logic_vector(63 DOWNTO @©); -- double
Out1l : OUT std_logic_vector(63 DOWNTO @) -- double
)

END COMPONENT;

COMPONENT LOCKSTEP_COMPARATOR1

PORT(clk : IN std_logic;
rstx : IN std_logic;
enb : IN std_logic;
Inl : IN std_logic_vector(63 DOWNTO ©); -- double
In2 : IN std_logic_vector(63 DOWNTO ©); -- double
Outl : OUT std logic _vector(63 DOWNTO ©) -- double
)

END COMPONENT;

-- Component Configuration Statements
FOR ALL : DSP_IP
USE ENTITY work.DSP_IP(rtl);

FOR ALL : DSP_IP_SHADOW
USE ENTITY work.DSP_IP_SHADOW(rtl);

FOR ALL : LOCKSTEP_COMPARATOR1
USE ENTITY work.LOCKSTEP_COMPARATOR1(rtl);

-- Signals
SIGNAL DSP_IP_ outl : std_logic_vector(63 DOWNTO ©); -- ufixe4
SIGNAL DSP_IP_SHADOW_outl : std_logic_vector(63 DOWNTO @); -- ufix64

SIGNAL LOCKSTEP_COMPARATOR1 outl : std_logic_vector(63 DOWNTO @); -- ufix64

866 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023

BEGIN
u_DSP_IP : DSP_IP
PORT MAP(clk => clk,
rstx => rstx,
enb => clk_enable,
Inl => INPUT2, -- double
ERROR_rsvd => ERROR_rsvd, -- double
In2 => INPUT3, -- double
Outl => DSP_IP outl -- double

);

u_DSP_IP_SHADOW : DSP_IP_SHADOW
PORT MAP(clk => clk,
rstx => rstx,
enb => clk_enable,

Inl => INPUT2, -- double

In2 => INPUT3, -- double

Outl => DSP_IP_SHADOW outl -- double
)

u_LOCKSTEP_COMPARATOR1 : LOCKSTEP_COMPARATOR1
PORT MAP(clk => clk,
rstx => rstx,
enb => clk_enable,

Inl => DSP_IP_outl, -- double

In2 => DSP_IP_SHADOW outl, -- double

Outl => LOCKSTEP_COMPARATOR1 outl -- double
)

ce_out <= clk_enable;
OUTPUT1 <= LOCKSTEP_COMPARATOR1 outl;

END rtl;

Appendix 2: Package File

-- File Name: hdl_prj\hdlsrc\DSP\ASIL D DSP_IP pac.vhd
-- Created: 2023-04-23 14:35:58

-- Generated by MATLAB 9.11 and HDL Coder 3.19

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
USE IEEE.numeric_std.ALL;

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA 867

PACKAGE ASIL_D DSP_IP pac IS
TYPE vector_of_unsignedll IS ARRAY (NATURAL RANGE <>) OF unsigned(10 DOWNTO @);
TYPE vector_ of_signed57 IS ARRAY (NATURAL RANGE <>) OF signed(56 DOWNTO ©);
TYPE vector_of_unsigned56 IS ARRAY (NATURAL RANGE <>) OF unsigned(55 DOWNTO @);
TYPE vector_of_unsigned52 IS ARRAY (NATURAL RANGE <>) OF unsigned(51 DOWNTO ©);
TYPE vector_of_unsigned106 IS ARRAY (NATURAL RANGE <>) OF unsigned(105 DOWNTO

0);
TYPE vector_of_signedl4 IS ARRAY (NATURAL RANGE <>) OF signed(13 DOWNTO 9);
TYPE vector_of_std_logic_vector64 IS ARRAY (NATURAL RANGE <>) OF

std logic_vector(63 DOWNTO 9);

END ASIL_D DSP_IP_ pac;

Appendix 3: HDL Code Generation Check report

HDL Code Generation Check Report for 'DSP/ASIL D DSP IP' open model
'DSP/ASIL D DSP IP'
Generated on 2023-04-23 14:35:59

HDL check for 'DSP' complete with 0O errors, 0 warnings, and 2 messages.

The following table describes blocks for which errors,
warnings or messages were reported.

Simulink Level Description

Blocks

and

resources

DSP Message 'AdaptivePipelining'is set to 'Off' for the model. 'AdaptivePipelining’ can improve the

achievable clock frequency and reduce the area usage on FPGA boards. To enable
adaptive pipelining, set the option to 'On'. When adaptive pipelining is enabled, it
inserts pipeline registers to create patterns that efficiently map blocks to DSP units on
the target FPGA device.

DSP Message 'LUTMapToRAM' is set to 'On' for the model. This option is used to map lookup tables
to a block RAM in hardware. To disable pipeline insertion for mapping lookup tables to
RAM, set the option to 'Off".

Appendix 4: HDL Code for Test Bench

-- File Name: hdl_prj\hdlsrc\DSP\ASIL D DSP_IP_ tb.vhd
-- Created: 2023-04-23 14:36:04
-- Generated by MATLAB 9.11 and HDL Coder 3.19

868 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023

-- Model base rate: 0.1
-- Target subsystem base rate: 0.1

-- Clock Enable Sample Time

-- ce_out 0.1
-- Output Signal Clock Enable Sample Time
-- OUTPUT1 ce_out 0.1

-- Module: ASIL D DSP_IP tb
-- Source Path:
-- Hierarchy Level: ©

LIBRARY IEEE;

USE IEEE.std_logic_textio.ALL;

USE IEEE.float pkg.ALL;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

LIBRARY STD;

USE STD.textio.ALL;

LIBRARY work;

USE work.ASIL D DSP_IP pac.ALL;
USE work.ASIL_D DSP_IP_tb_pac.ALL;

ENTITY ASIL_D DSP_IP tb IS
END ASIL_D_DSP_IP_tb;
ARCHITECTURE rtl OF ASIL_D DSP_IP tb IS

-- Component Declarations
COMPONENT ASIL_D_DSP_IP

PORT(clk : IN std_logic;
rstx : IN std_logic;
clk_enable : IN std_logic;

ERROR_rsvd : IN std_logic_vector(63 DOWNTO ©); -- double

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

INPUT2
INPUT3
ce_out
OUTPUT1

)5

END COMPONENT;

-- Component Configuration Statements

FOR ALL

: ASIL_D DSP_IP

USE ENTITY work.ASIL_D _DSP_IP(rtl);

-- Signals

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

clk

rstx

clk_enable
rawData_ERROR_rsvd
rawData_INPUT2
rawData_INPUT3
OUTPUT1_done

rdEnb
OUTPUT1_done_enb
OUTPUT1_addr
OUTPUT1_active
holdData INPUT3
INPUT3 offset
INPUT3_1
holdData_INPUT2
INPUT2 offset
INPUT2_1
holdData_ERROR_rsvd:
ERROR_rsvd_offset
ERROR_rsvd_1
checkl_done
snkDonen

resetn

tb_enb
tb_enb_delay
ce_out

OUTPUT1
OUTPUT1_enb
OUTPUT1_lastAddr
OUTPUT1_chkcnt
OUTPUT1_ignCntDone :
OUTPUT1_needToCount:
OUTPUT1_chkenb
OUTPUT1_chkdata

OUTPUT1_addr_delay_1 :

OUTPUT1 expected
OUTPUT1_ref
OUTPUT1_testFailure

std_logic;

-- ufix1

869

IN std logic _vector(63 DOWNTO ©); -- double
IN std_logic_vector(63 DOWNTO @); -- double
OUT std_logic;
OUT std logic_vector(63 DOWNTO ©) -- double
: std_logic;
: std_logic;
: std_logic;
: std _logic_vector(63 DOWNTO ©); - ufixe4d
: std_logic_vector(63 DOWNTO @); - ufix64
: std_logic_vector(63 DOWNTO ©); - ufix64
: std _logic; -- ufix1l
: std_logic;
: std_logic; -- ufixl
: unsigned(6 DOWNTO ©); -- ufix7
: std_logic; -- ufixl
: std_logic_vector(63 DOWNTO ©); - ufix64
: std _logic_vector(63 DOWNTO ©); - ufixe4d
: std_logic_vector(63 DOWNTO @); - ufix64
: std_logic_vector(63 DOWNTO ©); - ufix64
: std _logic_vector(63 DOWNTO ©); - ufixe4d
: std_logic_vector(63 DOWNTO @); - ufix64
std_logic_vector(63 DOWNTO @); -- ufix64
: std_logic_vector(63 DOWNTO ©); -- ufix64
: std_logic_vector(63 DOWNTO @); -- ufix64
: std _logic; -- ufixil
: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic;
: std_logic_vector(63 DOWNTO @); -- ufix64
: std_logic; -- ufix1l
: std_logic; -- ufixl
: unsigned(5 DOWNTO @); -- ufixé6
std_logic; -- ufix1l
std_logic; -- ufix1l
: std logic; -- ufixil
: std_logic; -- ufix1l
unsigned(6 DOWNTO @); -- ufix7
std_logic_vector(63 DOWNTO @); -- ufix64
std logic_vector(63 DOWNTO @); -- ufix64

870 ARAI Journal of Mobility Technology Vol 3; Issue 4 « October— December, 2023

BEGIN
u_ASIL D DSP_IP : ASIL_D DSP_IP
PORT MAP(clk => clk,
rstx => rstx,
clk_enable => clk_enable,

ERROR_rsvd => ERROR_rsvd_1, -- double
INPUT2 => INPUT2_ 1, -- double

INPUT3 => INPUT3_1, -- double

ce_out => ce_out,

OUTPUT1 => OUTPUT1 -- double

)

-- Data source for ERROR_rsvd
rawData_ERROR_rsvd <= X"3fb999999999999a";

-- Data source for INPUT2
rawData_INPUT2 <= X"4014000000000000" ;

-- Data source for INPUT3
rawData_INPUT3 <= X"4018000000000000" ;

OUTPUT1_done_enb <= OUTPUT1 _done AND rdEnb;

OUTPUT1 active <= "1' WHEN OUTPUT1_ addr /= to_unsigned(16#64#, 7) ELSE
l@l;

-- holdData reg for INPUT_Y_ outl
stimuli_INPUT_Y_outl_process: PROCESS (clk)
BEGIN
IF clk'event AND clk = "1' THEN
IF rstx = "1' THEN
holdData INPUT3 <= (OTHERS => 'X');
ELSE
holdData_INPUT3 <= rawData_INPUT3;
END IF;
END IF;
END PROCESS stimuli_INPUT_Y_outl_process;

stimuli INPUT_Y outl 1: PROCESS (rawData_INPUT3, rdEnb)
BEGIN
IF rdEnb = '©"' THEN
INPUT3 offset <= holdData INPUT3;
ELSE
INPUT3_offset <= rawData_INPUT3;
END IF;
END PROCESS stimuli_ INPUT_Y outl_1;

INPUT3 1 <= INPUT3 offset AFTER 2 ns;

-- holdData reg for INPUT_X outl

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA 871

stimuli INPUT_X outl process: PROCESS (clk)
BEGIN
IF clk'event AND clk = '1' THEN
IF rstx = "1"' THEN
holdData_INPUT2 <= (OTHERS => 'X');
ELSE
holdData_ INPUT2 <= rawData_INPUT2;
END IF;
END IF;
END PROCESS stimuli INPUT_X outl process;

stimuli_ INPUT_X_ outl_1: PROCESS (rawData_INPUT2, rdEnb)
BEGIN
IF rdEnb = '0" THEN
INPUT2_offset <= holdData_INPUT2;
ELSE
INPUT2_offset <= rawData_INPUT2;
END IF;
END PROCESS stimuli INPUT_X outl 1;

INPUT2_1 <= INPUT2_offset AFTER 2 ns;

-- holdData reg for ERROR_INTERFACE_1 TO INJECT_ERROR_CHANGE_VALUE_TO ZERO outl
stimuli_ERROR_INTERFACE_1_TO_INJECT_ERROR_CHANGE_VALUE_TO_ZERO outl_process:
PROCESS (clk)
BEGIN
IF clk'event AND clk = '1' THEN
IF rstx = "1"' THEN
holdData_ERROR_rsvd <= (OTHERS => 'X');
ELSE
holdData ERROR_rsvd <= rawData ERROR_rsvd;
END IF;
END IF;
END PROCESS
stimuli_ERROR_INTERFACE_1_TO_INJECT_ERROR_CHANGE_VALUE_TO_ZERO outl_process;

stimuli_ ERROR_INTERFACE_1_TO INJECT_ERROR_CHANGE_VALUE_TO ZERO outl_1: PROCESS
(rawData_ERROR_rsvd, rdEnb)
BEGIN
IF rdEnb = '©"' THEN
ERROR_rsvd_offset <= holdData_ERROR_rsvd;
ELSE
ERROR_rsvd_offset <= rawData_ERROR _rsvd;
END IF;
END PROCESS
stimuli ERROR_INTERFACE_1_TO_ INJECT_ERROR_CHANGE_VALUE_TO ZERO outl 1;

ERROR_rsvd_1 <= ERROR_rsvd_offset AFTER 2 ns;

snkDonen <= NOT checkl_done;

872 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023
resetn <= NOT rstx;
tb_enb <= resetn AND snkDonen;

-- Delay inside enable generation: register depth 1
u_enable_delay_process: PROCESS (clk)
BEGIN
IF clk'event AND clk = '1" THEN
IF rstx = "1' THEN
tb_enb_delay <= '0';
ELSE
tb_enb_delay <= tb_enb;
END IF;
END IF;
END PROCESS u_enable delay process;

rdEnb <= tb_enb_delay WHEN checkl_done = '0' ELSE
lel;

clk_enable <= rdEnb AFTER 2 ns;

rstx_gen: PROCESS
BEGIN
rstx <= '1';
WAIT FOR 20 ns;
WAIT UNTIL clk'event AND clk = '1°;
WAIT FOR 2 ns;
rstx <= '@';
WAIT,;
END PROCESS rstx_gen;

clk_gen: PROCESS

BEGIN
clk <= "1";
WAIT FOR 5 ns;
clk <= '@';

WAIT FOR 5 ns;

IF checkl_done = '1' THEN
clk <= "1°;
WAIT FOR 5 ns;
clk <= '@";
WAIT FOR 5 ns;
WAIT;

END IF;

END PROCESS clk_gen;

OUTPUT1_enb <= ce_out AND OUTPUT1_active;

-- Count limited, Unsigned Counter
-- initial value =10

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

-- step value =1

-- count to value = 100
Cc_4 process : PROCESS (clk)
BEGIN

IF clk'EVENT AND clk = '1' THEN
IF rstx = "1' THEN
OUTPUT1 addr <= to_unsigned(16#00#, 7);
ELSIF OUTPUT1 enb = "1' THEN
IF OUTPUT1_addr >= to_unsigned(16#64#, 7) THEN
OUTPUT1 addr <= to_unsigned(16#00#, 7);
ELSE
OUTPUT1_addr <= OUTPUT1_addr + to_unsigned(16#01#, 7);
END IF;
END IF;
END IF;
END PROCESS c_4 process;

OUTPUT1 lastAddr <= "1' WHEN OUTPUT1 addr >= to_unsigned(16#64#, 7) ELSE

lel;
OUTPUT1 _done <= OUTPUT1_lastAddr AND resetn;

-- Delay to allow last sim cycle to complete
checkDone_1 process: PROCESS (clk)
BEGIN
IF clk'event AND clk = '1"' THEN
IF rstx = "1' THEN
checkl_done <= '0";
ELSIF OUTPUT1 done_enb = "1' THEN
checkl done <= OUTPUT1_done;
END IF;
END IF;
END PROCESS checkDone_1 process;

OUTPUT1_ignCntDone <= '1' WHEN OUTPUT1_ chkcnt /= to_unsigned(16#20#, 6) ELSE

lel;
OUTPUT1_needToCount <= ce_out AND OUTPUT1_ignCntDone;

-- Count limited, Unsigned Counter
-- initial value =0
-- step value =1
-- count to value 32
OUTPUT1_IgnoreDataChecking process : PROCESS (clk)
BEGIN
IF clk'EVENT AND clk = '1' THEN
IF rstx = "1' THEN
OUTPUT1_chkcnt <= to_unsigned(16#00#, 6);
ELSIF OUTPUT1 needToCount = '1' THEN

873

874 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023

IF OUTPUT1 chkcnt >= to_unsigned(16#20#, 6) THEN
OUTPUT1_chkcnt <= to_unsigned(16#00#, 6);

ELSE
OUTPUT1_chkcnt <= OUTPUT1 chkcnt + to_unsigned(16#01#, 6);

END IF;

END IF;
END IF;
END PROCESS OUTPUT1_IgnoreDataChecking process;

OUTPUT1_chkenb <= "1" WHEN OUTPUT1_chkcnt = to_unsigned(16#20#, 6) ELSE
l@l;

OUTPUT1_chkdata <= ce_out AND OUTPUT1_chkenb;
OUTPUT1_addr_delay_1 <= OUTPUT1_addr AFTER 1 ns;

-- Data source for OUTPUT1 expected

OUTPUT1 _expected_fileread: PROCESS (OUTPUT1_addr_delay_ 1, tb_enb_delay, ce_out)
FILE fp: TEXT open READ_MODE is "OUTPUT1_expected.dat";
VARIABLE 1: LINE;
VARIABLE read_data: std_logic_vector(63 DOWNTO @);

BEGIN
IF tb_enb_delay /= "1' THEN
ELSIF ce_out = "1' AND NOT ENDFILE(fp) THEN
READLINE (fp, 1);
HREAD(1l, read_data);
END IF;
OUTPUT1 expected <= std_logic_vector(read_data(63 DOWNTO ©));
END PROCESS OUTPUT1_expected_fileread;

OUTPUT1_ref <= OUTPUT1l expected;

OUTPUT1_checker: PROCESS (clk, rstx)
BEGIN
IF rstx = '1" THEN
OUTPUT1_testFailure <= '0';
ELSIF clk'event AND clk = "1' THEN
IF OUTPUT1 _chkdata = '"1' AND NOT isFloatDoubleEqual(OUTPUT1, OUTPUT1_ref,

.9999999999999995e-08) THEN

OUTPUT1_ testFailure <= '1';
ASSERT FALSE
REPORT "Error in OUTPUT1: Expected " & to_hex(OUTPUT1_ref) & (" Actual
& to_hex(OUTPUT1))
SEVERITY ERROR;
END IF;
END IF;
END PROCESS OUTPUT1_checker;

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

completed msg: PROCESS (clk)

BEGIN

IF clk'event AND clk = '1' THEN
= "1' THEN
IF OUTPUT1_testFailure = '©' THEN
ASSERT FALSE
SEVERITY NOTE;

IF checkl_done

ELSE

ASSERT FALSE
REPORT '"***¥xxikdokdk*TEST COMPLETED (FATLLED)X¥kokoksksdokkdxsrarskn
SEVERITY NOTE;

END IF;
END IF;
END IF;

END PROCESS completed msg;

END rtl;

Appendix 5: Package File for Test Bench

-- File Name: hdl_prj\hdlsrc\DSP\ASIL D DSP_IP tb_pac.vhd
-- Created: 2023-04-23 14:36:04

-- Generated by MATLAB 9.11 and HDL Coder 3.19

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

LIBRARY IEEE;

USE IEEE.std_logic_textio.ALL;
USE IEEE.float pkg.ALL;

LIBRARY STD;
USE STD.textio.ALL;
LIBRARY work;

USE work.ASIL_D DSP_IP_pac.ALL;

PACKAGE ASIL_D DSP_IP tb_pac IS

-- Functions

FUNCTION to_hex(x :
FUNCTION to_hex(x :
FUNCTION to_hex(x :
FUNCTION to_hex(x :

FUNCTION to_hex(x :
FUNCTION isFloatEqual(x :

IN
IN
IN
IN
IN

std_logic) RETURN string;

std logic_vector) RETURN string;
signed) RETURN string;

unsigned) RETURN string;

real) RETURN string;

IN std_logic_vector; y : IN std_logic_vector;

875

876 ARAI Journal of Mobility Technology Vol 3; Issue 4 « October— December, 2023

eps: IN real; exp_len : IN natural; mantissa_len : IN
natural) RETURN boolean;
FUNCTION isFloatDoubleEqual(x : IN std_logic_vector; y : IN std_logic_vector;
eps: IN real) RETURN boolean;
END ASIL_D DSP_IP tb_pac;

PACKAGE BODY ASIL D DSP_IP tb_pac IS
FUNCTION to_hex(x : IN std_logic_vector) RETURN string IS
VARIABLE result : STRING(1 TO 256);

VARIABLE 1 : INTEGER;

VARIABLE imod : INTEGER;

VARIABLE j : INTEGER;

VARIABLE jinc : INTEGER;

VARIABLE newx : std_logic_vector(1023 DOWNTO @);
BEGIN

newx := (OTHERS => '0');

IF x'LEFT > x'RIGHT THEN
j = X'LENGTH - 1;
jinc := -1;

ELSE
j = 0;
jinc := 1;

END IF;

FOR i IN x'RANGE LOOP
newx(j) := x(i);
j :=3J + jinc;

END LOOP;

i := x'LENGTH - 1;

imod := x'LENGTH MOD 4;

IF imod = 1 THEN i := i + 3;
ELSIF imod = 2 THEN i := i + 2;
ELSIF imod = 3 THEN i := i + 1;
END IF;
j =15

WHILE i >= 3 LOOP
IF newx (i DOWNTO (i-3)) = "0000" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "0001" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "0010" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "0011" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "0100" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "0101" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "0110" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "0111" THEN result(j) :=
ELSIF newx(i DOWNTO (i-3)) = "1000" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "1001" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "1010" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "1011" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "1100" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "1101" THEN result(j) := '
ELSIF newx(i DOWNTO (i-3)) = "1110" THEN result(j) := '

e We Ve Ve Ve Ve Lo e

MOMNTm>OVUONAOTUVTPD,WNREOO
Ce Le Lo Le Le Le e

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

ELSIF newx(i DOWNTO (i-3)) = "1111" THEN result(j) := 'F';
ELSE result(j) := 'X';
END IF;
i:=1 - 4;
joi= 3+ 1

END LOOP;

RETURN result(1 TO j - 1);

END;

FUNCTION to_hex(x : IN std logic) RETURN string IS
BEGIN

RETURN std_logic'image(x);
END;

FUNCTION to_hex(x : IN signed) RETURN string IS
BEGIN

RETURN to_hex(std_logic_vector(x));
END;

FUNCTION to_hex(x : IN unsigned) RETURN string IS
BEGIN

RETURN to_hex(std_logic_vector(x));
END;

FUNCTION to_hex(x : IN real) RETURN string IS
BEGIN

RETURN real'image(x);
END;

FUNCTION isFloatEqual(x : IN std_logic_vector; y : IN std_logic_vector;

eps : IN real; exp_len : IN natural;

mantissa_len : IN natural) RETURN boolean IS

VARIABLE absdiff : real;
VARIABLE a : real;
VARIABLE b : real;

BEGIN
a := to_real(to_float(std ulogic vector(x), exp_len, mantissa len));
b := to_real(to_float(std_ulogic_vector(y), exp_len, mantissa_len));

absdiff := abs(a - b);

IF absdiff < eps THEN -- absolute error check
RETURN TRUE;

ELSIF a = b THEN -- check infinities
RETURN TRUE;

ELSIF a*b = 0.0 THEN -- either is zero
RETURN absdiff < eps;

ELSIF (abs(a) < abs(b)) THEN -- relative error check
RETURN absdiff/abs(b) < eps;

ELSE
RETURN absdiff/abs(a) < eps;

END IF;

END;

877

878 ARAI Journal of Mobility Technology Vol 3; Issue 4 « October— December, 2023

FUNCTION isFloatDoubleEqual(x : IN std_logic_vector;

y : IN std_logic_vector;

eps : IN real) RETURN boolean IS
VARIABLE a : std_logic_vector(63 downto 0);
VARIABLE b : std_logic_vector(63 downto 0);

VARIABLE zrEx : std_logic_vector(10 downto ©) := b"111" & X"FF";

VARIABLE zrMt : std_logic_vector(51 downto @) := x"0000000000000";

BEGIN

a = X;

b :=y;

IF (a(62 downto 52) = zrEx AND a(51 downto @) /= zrMt) THEN
a(63) := '0';
a(51 downto @) := x"00000000000O1";

END IF;

IF (b(62 downto 52) = zrEx AND b(51 downto @) /= zrMt) THEN
b(63) := '0';
b(51 downto @) := x"0000000000001";

END IF;
RETURN isFloatEqual(a, b, eps, 11, 52);

END;

END ASIL_D DSP_IP_tb_pac;

Appendix 6: Log File for FPGA Synthesis

Task "Create Project" successful.
Generated logfile:

kkxkkk Vivado v2022.1 (64-bit)
¥¥x* SW Build 3526262 on Mon Apr 18 15:48:16 MDT 2022
¥¥xx IP Build 3524634 on Mon Apr 18 20:55:01 MDT 2022
** Copyright 1986-2022 Xilinx, Inc. All Rights Reserved.

source ASIL_D DSP_IP Xilinx_Vivado_run.tcl -notrace
Create new Xilinx Vivado 2022.1 project hdl_prj\vivado_prj

\ASIL D DSP_IP_vivado.xpr

create_project: Time (s): cpu = 00:00:02 ; elapsed = 00:00:09 . Memory (MB): peak

= 1637.656 ; gain = 0.000

Set Xilinx Vivado 2022.1 project properties

Update Xilinx Vivado 2022.1 project with HDL source files
WARNING: [Vivado 12-818] No files matched '*.tcl'

Close Xilinx Vivado 2022.1 project.

INFO: [Common 17-206] Exiting Vivado at Sun Apr 23 07:16:41 2023...

Elapsed time is 98.6648 seconds.

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA 879
Appendix 7: Passed Synthesis Report

Copyright 1986-2022 Xilinx, Inc. All Rights Reserved.

| Tool Version : Vivado v.2022.1 (win64) Build 3526262 Mon Apr 18 15:48:16 MDT
2022

| Date : Sun Apr 23 07:21:20 2023

| Host : LAPTOP-3H9IEFKL running 64-bit major release (build 9200)

| Command : report_utilization -file ASIL_D DSP_IP utilization_synth.rpt -pb
ASIL_D _DSP_IP_utilization_synth.pb

| Design : ASIL_D_DSP_IP

| Device : xa7aleotcsg324-11I

| Speed File : -1I

|

Design State : Synthesized

Utilization Design Information

Table of Contents

1. Slice Logic

1.1 Summary of Registers by Type
2. Memory

3. DSP

4. I0 and GT Specific
5. Clocking

6. Specific Feature
7. Primitives

8. Black Boxes

9. Instantiated Netlists

1. Slice Logic

B e +------ +------- tommmmm - dommmmmm - +------- +
| Site Type | Used | Fixed | Prohibited | Available | Util% |
dmmmmmmmm e mm e Hmmmm-- Hmmmmm-- Hmmmmmm—— e Fmmmmmmm——-- Hmmmm—-- +
Slice LUTs*	5030	0	o	63400	7.93
LUT as Logic	4486	0	0	63400	7.08
LUT as Memory	544	0	0	19000	2.86
LUT as Distributed RAM	0	0			
LUT as Shift Register	544	0			
Slice Registers	7409	0	0	126800	5.84
Register as Flip Flop	7409	0	0	126800	5.84
Register as Latch	0	0	0	126800	©.00
F7 Muxes	2	0	0	31700	<0.01
F8 Muxes	0	0	o	15850	©.00
N T Hmm-me- Hemmmm- Hemmmmmmmemea- Fommmmmmeea- Hemmmmmm- +

* Warning! The Final LUT count, after physical optimizations and full implementation, is
typically lower. Run opt_design after synthesis, if not already completed, for a more
realistic count.

880 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023

1.1 Summary of Registers by Type

dommm oo D T R R T +
| Total | Clock Enable | Synchronous | Asynchronous |

- R T R o +

| @ | _ - | - |

| @ | _ - | Set |

| o |] - Reset |

| @ | _ Set | - |

| o | | Reset | -

| o | Yes | - -

| o | Yes | - Set |

| o | Yes | - Reset |

| o | Yes | Set | -

| 7409 | Yes | Reset | -

- o e o +

2. Memory

D T R - R O R +
| Site Type | Used | Fixed | Prohibited | Available | Util% |
D TR R R R dommmm oo R +
Block RAM Tile	0	0	0	135	©.00
RAMB36/FIFO*	0	0	0	135	©.00
RAMB18	0	0	0	270	©0.00
D T R o R oo R +

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can
accommodate only one FIFO36E1l or one FIFO18El. However, if a FIFO18El occupies a
Block RAM Tile, that tile can still accommodate a RAMB18E1l

3. DSP

e FREpE—— R T —— e FREpE +
| Site Type | Used | Fixed | Prohibited | Available | Util% |
$emmmmmmmmmmeaaaa- SRR FRR - fommmmmmmm—aa- $ommmmmmmmaaa fmmmmma- +
| DSPs | 54 | 0 | 0 | 240 | 22.50 |
| DSP48E1l only | 54 | | | | |
$ommmmmmmmmmeaaa-- TR FRR - femmmmmmmmaa- N R fmmmmma- +

881

Priyank Sharma: Field Programmable Functional Safety Mechanisms Implementation using FPGA

I0 and GT Specific

4.

R i R e e it =

| Used | Fixed | Prohibited | Available | Util% |

Site Type

OUT FIFO

PHASER REF
IN FIFO

Bonded IPADs
PHY CONTROL
IDELAYCTRL

Bonded IOB

5. Clocking

Site Type | Used | Fixed | Prohibited | Available |

PLLE2_ADV

MMCME2_ADV

6. Specific Feature

R R it e e et CEE LT

| Used | Fixed | Prohibited | Available | Util% |

Site Type

FRAME ECCE2

EFUSE USR

882 ARAI Journal of Mobility Technology Vol 3; Issue 4 ¢ October— December, 2023

7. Primitives

Fo-mmm e Feom---- e L E L LT T +
| Ref Name | Used | Functional Category |
L Fe----- e LT +
FDRE	7409	Flop & Latch
LUT2	1519	LUT
LUT6	1510	LUT
LUT3	831	LUT
LUTS	763	LUT
LUT4	605	LUT
SRL16E	481	Distributed Memory
CARRY4	442	CarrylLogic
LUT1	161	LUT
SRLC32E	63	Distributed Memory
DSP48E1	54	Block Arithmetic
MUXF7	2	MuxFx
Fo-mmm e Feom---- e L E L LT T +

Appendix 8: Resource & Timing Summary

Timing summary

Requirement 10000 ns
Data Path Delay | 5.394 ns
Slack 9994.5 ns
Clock Frequency | 181.09 MHz

