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ABSTRACT 
Structural response of battery packs in electric vehicles 
when subjected to road loads is an important factor that 
decides its performance and life during normal operation. In 
this paper a kriging response surface model is built using a 
Design of Experiment (DOE) run dataset to predict 
structural response and global modal frequency metrics of 

the battery pack. Using this Response Surface Model 
(RSM), we can rapidly optimize the battery pack design with 
respect to structural response and achieve significant mass 
reduction. This method reduces turnaround times for design 
optimization in early stages of battery pack design. 
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Introduction 
As the demand for electric vehicles rise, the need for 

battery packs that provide better driving range as well as 
enhanced performance also increases. With larger 
battery packs, the response of the pack to road shocks 
and vibrations is a key metric that is analyzed to ensure 
longevity of the pack and safety of the customers. This 
study considers the use of kriging-based Response 
Surface Models (RSM) to develop the capability to predict 
the vibration response of a battery pack, subsequently 
aiding in mass optimization. Kjell and Lang, 2013 [1] 
summarizes different battery vibration test standards 
applicable for Li-ion batteries. The major goals of this 
study are to: 

• Build a response surface model of the battery pack 
vibration response behavior using Kriging 
response surface method  

• Predict response, global modes, and mass of the 
battery pack for different component gauge 
variations using the RSM 

• Achieve mass reduction for the battery pack using 
prediction functions from kriging 

• Contribute to Multi-Disciplinary Optimization 
(MDO) activities using this prediction capability 

Simulation Loads and Considerations 

Battery vibration test standards 
Various standards specify test procedures that 

emulate the effect of sustained road loads on battery 

modules and packs, which ultimately affect the 
performance and life of the Rechargeable Energy Storage 
System (RESS). To perform such test cases, either sine-
sweep method or random vibration is used. 

SAE J2380 standard for vibration testing of electric 
vehicle battery uses road load data measured through 
100,000 miles of vehicle operation (Figure 1), which is 
condensed to a power density spectrum that shows the 
combined effect of shock loads at various G-levels. The 
test procedures specified in the document requires a 3-
axis shaker table capable of generating accelerations up 
to 1.9Gs, over a frequency range of 10 to 200Hz as per 
SAE J2380, 2013 [2]. 

 
Fig. 1. SAEJ2380 random vibration spectra. 

During the test, the battery is checked for loss of 
electrical isolation, resonance conditions, voltage 
fluctuations as well as thermal failure conditions. The 
manufacturer can include further measurements for 
compliance with their additional requirements. Overall, 
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the tests ensure compliance of the battery structural and 
performance integrity to road-load conditions for a 
vibration profile up to standard response Grms targets. 
USABC procedure #10 specifies similar requirements for 
random vibration tests, with an added provision for sine-
sweep. The sine-sweep excitation is applied at the vehicle 
resonant frequency, specified by the U.S. Advanced 
Battery Consortium (USABC) within the range from 
10Hz to 30 Hz, as per USABC, 1996 [3] 

The test standards serve as guidelines for studying 
the structural response of a battery pack. A battery 
module that is compliant with these standards would 
perform nominally at input vibration levels less than 
maximum specified in the test standard. Hence, we 
should ensure that the same levels feed into the 
mechanical hold down locations for the modules (say 
bolting regions), ensuring pack life and consistent 
battery performance over expected road load conditions. 

RLDA & vRLDA road profile input 
Road Load Data Acquisition (RLDA) is a method used 

to measure vehicle response in chosen driving 
environments. Hooper and Marco, 2014 [4] explains 
battery pack vibration measurement instrumentation 
and road surface classifications. The measured data is a 
result of monitoring important parameters that affect 
vehicle driving performance such as air and tire 
resistance and rolling speed. RLDA generates large 
amounts of data that is compressed into a Power Spectral 
Density (PSD) profile, which gives an overview of the 
shock load intensities over a frequency spectrum. 

Schudt et al. , 2011 [5] demonstrates the Virtual Road 
Load Data Acquisition (vRLDA) capability that is 
leveraged to generate virtual road load data well ahead 
of any tangible hardware build. Since measured data is 
seldom available for Battery Electric Vehicles (BEVs), it 
is a common practice to use road profile data from 
generic cars or trucks along with vRLDA data to form a 
derived curve that is assumed to have close conformance 
with actual vehicle road load response behavior. This 
input profile curve is used to analyze the structural 
response of the pack. 

Vibration response simulation in FEA 
Simulation of structural response is conducted using 

a CAE solver with the selected PSD profile input. The 
Finite element (FE) model of the battery pack is solved to 
figure out the modal frequencies and vibration response 
to generate peak response results in Grms at the regions 
where the modules are connected to the battery pack 
enclosure (Figure 2). The RESS to vehicle attachment 
points are constrained.  

 
Fig. 2. Representation of the battery pack model. 

Performance targets are specified based on the ability 
of the battery module to retain structural and 
operational integrity. If the Grms response levels 
measured at the connection location (Figure 3) is greater 
than the target value it is tested for using any of the 
mentioned standards (decided based on standards and 
manufacturer preferences), the analysis is concluded a 
failure. However, in our study, the battery pack is 
already compliant to standard targets, and we aim at 
reducing mass from the structure to optimize it further. 

 
Fig. 3. Output Acc (Y) vs Frequency (x) response curve at a 
measured point (module hold-down location). 

Besides the peak response targets, the first three 
global frequency modes of the battery pack are also 
recorded to ensure that it is sufficiently displaced from 
the dominant vehicle resonant frequency. 

Response Surface Modelling 

The main goal of this study is to predict the 
structural response of a battery pack instantaneously 
without running recurring simulations to support MDO 
activities. Rather than running multiple analysis to 
validate each optimized battery pack FE configuration, a 
Low Fidelity Model (LFM), otherwise known as a 
metamodel is created as an RSM that can predict a 
similar result in a less computationally intensive way, as 
explained by Martin and Simpson, 2004 [6].  Creating 
the LFM requires data samples from reality, and in our 
case the reality is substituted by a High-Fidelity Model 
(HFM) which is the Finite Element Analysis method 
used for response simulation. To sample data from 
various sites, we run a Design of Experiments (DOE) 
procedure, to generate multiple input FE models. To fit 
the metamodel, a Kriging surface method is used. 

Kriging method 
The Kriging method is a statistical interpolation 

technique, consisting of a parametric regression model 
and a nonparametric stochastic model. The stochastic 
parameters are defined using design of experiments 
(DOE) data obtained here by solving FE models 
generated according to a generated DOE matrix, 
explained in Zhaoyan et al., 2015 [7]. This method finds 
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its origins in Geostatistics, pioneered by a South African 
mining Engineer named Danie G. Krige. Kriging was 
used to model underground mineral concentrations using 
data from just a few core drill samples.  

The method can accomplish response prediction at 
any point, as well as assess the local uncertainty called 
Kriging variance on the response. Magnitude of variance 
determines certainty of the prediction. 

In traditional multi-order regression fits, the form of 
the curve is assumed early before the fitting is done. 
Kriging considers outputs of a system as a random 
process and is comprised of two parts: A linear regression 
component that projects the general trend of the data, 
and a probabilistic component that estimates the 
deviation from measured data. [[7]].  

[[7]] 𝑦 𝑥 𝒇𝑻 𝑥 𝜷 𝑍 𝑥  
The stochastic component in kriging, denoted by Z(x), 

assumes that the errors in predicted values at 
interpolation locations must always be a Gaussian 
distribution (Figure 4). Discussion regarding selection of 
kriging form (choice of Spatial correlation function 
(SCF)) and using univariate SCF for each input 
dimension is explained in [[7]]. 

 
Fig. 4. Example of a kriging model. Dotted lines indicate confidence 
intervals. 

Various research material is available for application 
of Kriging methodology in CAE optimization in finite 
element models. Dong et. al, 2019 [9] demonstrates the 
use of Kriging based optimization in the design of the 
hull-structure of an autonomous underwater vehicle. 
Finite element models are run to find the maximum von-
mises stress, buckling load of the shell structure, and the 
sample values are used to build the response surface 
model. Kachinowski and Fu, 2005 [8] shares information 
about a Kriging-based error reduction approach used in 
vehicle occupant restraint system design, in vehicle 
structure CAE. In this study, we generate and solve 
multiple DOE models from a baseline battery pack model 
to create an output dataset. The kriging method is used 
to fit RSMs, which are then cross validated with the 
same input dataset using a “leave-one-out” method. The 
RSM is then used to predict vibration response for a 
given configuration of the pack built using controlled 
component gauges, and possibility of mass optimization 
is investigated. 

 

 Input parameters for DOE 
A host of input parameters may be chosen to tune 

with in the battery pack model, such as component 
gauges, material, parametrized component features etc. 
These parameters will essentially function as the “knobs” 
to control for the user to optimize the model once the 
RSM is generated. In earlier phases of the pack design, 
the component designs are comparatively crude, and 
thus simple gauge reduction or material changes are 
enough to enable optimization studies. Here the input 
parameters are set as component gauge variations. 

The components are grouped into nine different 
blocks based on baseline gauge values and/or depending 
on how they are attached to the structure (Figure 5). 
Gauge blankets are selected based on how much control 
we require in the system during prediction. All 
components within a gauge blanket are set to the 
selected gauge in each DOE model. 

 
Fig. 5. Blanket gauge groups for components. 

DOE matrix 
Selection of input variable bounds: The DOE matrix 

is generated based on user-specified levels of gauges 
(Table 1), considering the gauge variables as discrete. 
This would ensure that generated gauges in DOE models 
do not have unrealistic values that have practical 
implications in manufacturing. Also, it should be noted 
that any change in gauge would apply to all components 
within the group, and it is not possible to vary gauges for 
specific components in a group once they are assigned to 
a design variable input. Assigned gauge levels for each 
variable are shown in table 1. 

TABLE 1  

DOE input parameters and discrete gauge value levels 

Gauge_blanket Code Type Levels (mm) 

Component_A P1 Q 1/1.2/1.4/1.5/1.6/1.7 

Component_B P2 Q 0.7/0.8/0.9/1/1.1/1.2 

Component_C P3 Q 0.7/0.8/0.9/1/1.1/1.2 

Component_D P4 Q 0.7/0.9/1.1/1.2/1.3/1.4 

Component_E P5 Q 1.8/1.9/2/2.1/2.2 

Component_F P6 Q 1/1.1/1.2/1.3/1.4 

Component_G P7 Q 0.8/0.9/1/1.1/1.2 

Component_H P8 Q 1/1.2/1.4/1.5/1.6/1.7 

Component_I P9 Q 1.5/1.7/1.9/2/2.1/2.2 

Experiment design method:  A Strength-Two 
Orthogonal array design is used to generate the DOE 
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matrix, with the above shown nine input variables. The 
key feature of this method is that it produces a set of 
samples that yield uniform sampling in any t-
dimensional projection of an n-dimensional design space 
where (t<n) as explained by Giunta et al., 2003 [10]. 
Orthogonal array sampling produces a design sample 
subset from a library of stored array samples, and a pre-
defined number of DOE points are output for use. An 
example for a 2-strength OA in a 3-dimensional design 
space is shown in figure 6. 

 
Fig. 6. Each of the shaded bins contain one sample. The figure 
represents a 3-dimensional, 2 strength OA [10] 

In this scenario with 9 input variables, 64 DOE 
points are selected as optimum, below which the 
correlation value with the full array starts to deteriorate. 
An example of the generated DOE matrix is shown in 
table 2. 

TABLE 2  

DOE points in the generated matrix (all gauges in mm) 

Poin
t 

Comp
A 

Comp
B 

Comp
C 

Comp
D 

Comp
E 

Comp
F 

Comp
G 

Comp
H 

Comp
I 

1 1 1.2 0.8 1.1 2.2 1 1.2 1 2 
2 1.7 0.7 0.8 1.4 1.8 1.3 0.8 1.6 1.7 
. . . . .. . . . . . 

64 1.4 0.9 0.8 1.2 1.9 1.2 0.9 1.4 1.9 

Size of the dataset does have an impact on the quality 
of surface fits, but too many input design variables would 
require a very large number of DOE runs that will 
consume excessive computing resources and time. For 
this problem, 64 DOE models are generated. These 64 
models, along with the baseline model are used to 
generate the RSM. 

Generating FE models using the doe matrix 
The CAE preprocessing software HypermeshTM was 

used to generate the DOE models in the selected solver 
format. From the baseline model, the property 
“PSHELL” cards (Figure 7) are isolated, and the gauge 
values are fed as a spreadsheet file to a tcl/tk script. This 
generates and exports all required DOE models to a 
directory of choice. The files are submitted as batch to an 
HPC cluster to solve. 

 
Fig. 7. PSHELL property generated by script for DOE models 

Doe results 
The out and .pch files after solver modal and response 

runs are parsed to extract relevant output information to 

build the RSM model. Python and tcl scripts enable file 
parsing and result extraction. Global modes are 
extracted based on effective mass fraction participating 
in a frequency mode. A certain threshold value of 20%-
30% is decided, according to which global modes are 
extracted from the result file (Figure 8). Generally, 
frequency modes having less than 20% mass 
participation would be local modes having no real effect 
on the battery pack. 

 
Fig. 8. Extracted global modes for a DOE point. Effective mass 
fractions in each DOF are shown. 

Similarly, the peak response value in Grms is also 
extracted in X (fore-aft), Y (lateral) and Z (vertical) 
directions, along with the corresponding frequencies. 
(Figure 9). The mass of each DOE model is directly 
computed from HypermeshTM at the time when all the 
DOE models are initially generated. 

 
Fig. 9. Extracted response results and corresponding frequencies for 
the first seven DOE points 

RSM Generation and Cross Validation 

To generate a kriging surface, all design variables 
(gauge buckets 1-9) and result outputs (10 outputs) are 
used. A general structure of the RSM is summarized in 
figure 10. 

 
Fig. 10. General structure of the RSM used for prediction 

The RSM is cross validated using the “leave-one-out” 
method. Here, the actual value of each point in the DOE 
space is predicted using a surface comprising of all other 
points in the space. An ideal case would have all points 
in the Predicted vs Actual value plots group around the 
45-degree line (Figure 11). In this case, the plot for 
output variable “Freq Y” shows most dispersion, but we 
may ignore it because our battery pack model shows 
comparatively mild response conditions in the lateral 
vehicle direction. 

The error vs point number plot (Figure 12) shows the 
error in prediction for all the 65 DOE points we have 
selected to generate the RSM.  Outlier data points can 
easily be identified from this plot. Similarly, error plots 
for all outputs are analyzed. 

# Freq Xt Yt Zt Xr Yr Zr
2 58.79 3.7E-05 2.4E-06 0.7653 2.5E-05 0.731 2.7E-06
4 64.45 0.00044 0.02978 2.7E-05 0.4918 0.00022 0.02831

10 72.48 0.5248 0.00067 0.00118 5.24E-07 0.00552 0.00066
53 115.4 5.23E-08 0.4953 1.2E-05 0.2229 8.9E-06 0.3907

DOE #  Max X  Max Y  Max Z  Freq X  Freq Y  Freq Z
1 1.8 0.78 0.91 76 114 67
2 1.78 0.83 1 75 111 62
3 1.87 0.79 0.87 74 112 65
4 1.79 0.77 0.84 76 114 68
5 1.86 0.79 0.92 74 111 64
6 1.8 0.81 1 75 112 63
7 1.77 0.78 1.03 74 113 62
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Fig. 11. Predicted vs Actual value plots using "leave-one-out" cross validation technique for Max X response, First modal frequency, and Mass. 

Fig. 12. Error vs Point number (DOE) plot for Max X response, First modal frequency, and Mass. 

The mean squared errors (Table 3), calculated from 
variance of output from the regression fit as in 
Kachnowski, B et al. [[7]], calculated as a fraction of 
output range are shown below: 

TABLE 3  

Mean squared errors for outputs after cross validation 

Output param Param-
code 

Mean squared 
error as a fraction 

of Y range (%) 

Global mode 1 (Hz) F1 1.70 

Global mode 2 (Hz) F2 8.08 

Global mode 3 (Hz) F3 6.02 

Peak response in X (Grms) Max X 3.68

Peak response in Y (Grms) Max Y 5.56

Peak response in Z (Grms) Max Z 1.98

Peak X resp. Frequency (Hz) Freq X 5.83 

Peak Y resp. Frequency (Hz) Freq Y 9.99 

Peak Z resp. Frequency (Hz) Freq Z 2.68 

Mass of battery pack Mass 0.46 

Analysis of variance (ANOVA) 
The analysis of variance studies the influence of 

inputs parameters on the outputs. By performing 
ANOVA, we can figure out the percentage contributions 
of each input parameter for the DOE and effectively tune 
the model for further optimization. 

The design variables P1, P7 and P8 show significant 
contributions in peak response and first global frequency 

mode outputs (Figure 13). This knowledge can be used to 
refine and/or eliminate the design variable inputs in 
further studies. Convergence analysis gradually adds 
data points as the model is checked for percent 
contributions, finally reaching a point where no further 
addition of points show increase or decrease in percent 
contributions in an input parameter. This also helps to 
validate the DOE space size that is used to build the 
RSM. The convergence chart for one of the output 
parameters (Max X – Peak response in the X direction) is 
shown in Figure 14. 

When multiple input parameters have an interaction 
with each other, the effect on changing one parameter on 
the output differs with the value of the other (Figure 15). 
Whenever this value is more than 5%, it is plotted as an 
interaction plot that plots main effect of both parameters 
when the other is kept constant at its lower or upper 
bounds. The main effect plot (Figure 16) illustrates the 
nature of variation of the output when the input 
parameters are varied from 0% (the lower bound) to 
100% (the upper bound). Here, parameter P2 is found to 
have no effect until it approaches the upper bound value. 
Except parameters P1, P7 and P8 others are found to 
have no real significance in predicting value of “Max X”. 
Although these inferences may not reflect in real life 
design choices, it can be used to streamline the RSM in 
future iterations. 
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Fig. 13. ANOVA percent contributions for input variables P1-P9 and their interactions, for Max X response, First modal frequency, and Mass 

 

 

Fig. 14. Convergence of percent contributions for output "Max X". 

 

Fig. 15 Main effect plots for all inputs P1-P2 for output Max 
response X. 

 

Fig. 16. Plot showing interaction between P1 and P2. 

Here, increasing gauge of parameter “P2” when “P1” 
value is kept at its lower bound tends to increase the 

peak X-response value of the pack, and vice versa when 
kept at the upper bound. Similarly, it is ideal to analyze 
all variable interactions for all outputs to gain valuable 
insight into the RSM characteristics.  

RSM Correlation and Mass Optimization 

The Response surface model generated using Kriging 
method enables export of prediction functions, to a 
specified confidence level (95%). Prediction functions are 
generated and exported for each of the ten 
output/Reponses. Using these functions, a dashboard is 
generated in excel (Figure 17) where for any user-input 
value of DVs (Design variables – gauges), all required 
responses can be predicted instantly. However, as the 
gauge bounds depart the bounds used for building the 
RSM (the DOE bounds), the prediction results tend to 
deviate. 

 
Fig. 17. Excel dashboard for response and modal prediction for the 
battery pack (Sample shown). 

Correlation of predicted results are checked by 
solving FE models with the thickness gauge values used 
for prediction and comparing the results. Two such sets 
of gauges are shown in the table below and were selected 
by were selected on a consensus from relevant 
stakeholders (Table 4). The difference in results between 
predicted and FEA outputs are found to match closely, as 
the cross-validation results also suggested (Table 5). 
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TABLE 4  

Proposed gauge combinations for correlation models 

Gauge_blanket (mm) Design proposal 1 Design proposal 2 

Component_A 1.00 1.00 

Component_B 1.10 0.60 

Component_C 0.80 0.60 

Component_D 1.20 1.20 

Component_E 1.20 1.80 

Component_F 1.20 1.00 

Component_G 0.90 0.80 

Component_H 1.00 1.00 

Component_I 1.20 1.20 

TABLE 5  

Correlation result data that to show RSM reliability (Mb is mass of 
the baseline model battery pack) 

Outputs Proposed gauges #1 Proposed gauges #2  
Prediction Actual Prediction Actual 

F1 (Hz) 54.36 55.1 55.8 55.8 

F2 (Hz) 59.19 59.9 62.62 61.8 

F3 (Hz) 63.26 69.7 74.8 71.8 

Max X (Grms) 1.7 1.76 1.72 1.7 

Max Y (Grms) 0.817 0.95 0.81 0.83 

Max Z (Grms) 1.142 1.02 1.09 1.1 

Freq X (Hz) 70.28 69 71.8 72 

Freq Y (Hz) 109.1 105 111.5 108 

Freq Z (Hz) 54.75 55 55.36 56 

Mass (Kg) Mb-35 Mb-35 Mb-76 Mb-77 

A detailed optimization set up may be performed 
using an established multi-objective optimization 
technique like the Pareto front, that can quickly generate 
a set of feasible solutions. This is however a future scope 
for the study, and mass optimization here is performed 
through a simple excel data solver that uses outputs 
from the Kriging RSM predict functions to generate 
optimum gauge values. The range of optimization may be 
controlled by varying the thickness bounds (Table 6), 
provided they do not deviate too much from the DOE 
bounds.  

TABLE 6  

Constraints and objectives used for Mass optimization of the battery 
pack 

Parameter Type Objective Target Lower 
bound 

Upper 
bound 

Gauge1-9 Input   Yes Yes 

Modal 
Frequency 
1-3  

Output - Vehicle 
modal 
Target 

- - 

Response 
X/Y/Z 

Output - Target 
Grms for 
battery 
module 
integrity 

- - 

Peak 
response 
Frequencies 
X/Y/Z 

Output - - - - 

Mass Output Minimize - - - 

The optimal design obtained within DOE bounds was 
up to 36kg lesser than the baseline battery pack mass. 
This mass reduction is a significant result since we can 
maintain pack modal and road response performances. 
This prediction interface can now be used in MDO 
operations as a quick check for estimating modal and 
response behavior of the battery pack. MDO also involves 
stakeholders from other CAE disciplines like safety and 
crash. 

Conclusion 
The study conducted here reinforces the use of a 

metamodel approach using kriging RSM in the design 
optimization of a battery pack. Since the pack already 
meets target response requirements, an opportunity is 
presented for mass reduction using prediction functions 
of the RSM model. Careful selection of Input design 
variables that can effectively influence the behavior of 
the pack are crucial when building the RSM. After 
generation of the RSM, it is cross validated to ensure 
model credibility, as well as analysis of variance 
(ANOVA) is performed to determine if any further 
streamlining is required while selecting input variables. 
Multiple gauge proposals were made, and the predicted 
values were correlated with analysis runs. With the 
validated RSM, we can quickly predict peak vibration 
response, global frequency modes as well as mass of the 
battery pack for ideally all gauge variations of the input 
parameters. This greatly reduces turnaround time in 
MDO activities, where validation with respect to modal 
frequencies and vibration response of the pack are 
available instantly. This method may be used in the 
initial stages of the battery pack design when there is 
maximum room for improvement.  
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